Cass-Capco Institute Paper Series on Risk
Minimise risk, optimise success

With a Masters degree from Cass Business School, you will gain the knowledge and skills to stand out in the real world.

MSc in Insurance and Risk Management

Cass is one of the world’s leading academic centres in the insurance field. What’s more, graduates from the MSc in Insurance and Risk Management gain exemption from approximately 70% of the examinations required to achieve the Advanced Diploma of the Chartered Insurance Institute (ACII).

For applicants to the Insurance and Risk Management MSc who already hold a CII Advanced Diploma, there is a fast-track January start, giving exemption from the first term of the degree.

To find out more about our regular information sessions, the next is 10 April 2008, visit www.cass.city.ac.uk/masters and click on 'sessions at Cass' or 'International & UK'.

Alternatively call admissions on:
+44 (0)20 7040 8611
TABLE OF CONTENTS

PART 1

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Opinion — Delta hedging a two-fixed-income-securities portfolio under gamma and vega constraints: the example of mortgage servicing rights</td>
</tr>
<tr>
<td>12</td>
<td>Opinion — Reducing the poor’s investment risk: introducing bearer money market mutual shares</td>
</tr>
<tr>
<td>15</td>
<td>Opinion — Financial risk and political risk in mature and emerging financial markets</td>
</tr>
<tr>
<td>19</td>
<td>Estimating the iceberg: how much fraud is there in the U.K.?</td>
</tr>
<tr>
<td>31</td>
<td>Enhanced credit default models for heterogeneous SME segments</td>
</tr>
<tr>
<td>41</td>
<td>The impact of demographics on economic policy: a huge risk often ignored</td>
</tr>
<tr>
<td>51</td>
<td>Risk and return measures for a non-Gaussian world</td>
</tr>
<tr>
<td>55</td>
<td>Medium-term macroeconomic determinants of exchange rate volatility</td>
</tr>
<tr>
<td>65</td>
<td>Risk adjustment of bank stocks in the face of terror</td>
</tr>
<tr>
<td>75</td>
<td>Macroeconomic risk — sources and distributions according to a DSGE model of the E.U.</td>
</tr>
</tbody>
</table>

PART 2

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Opinion — Risk management in the evolving investment management industry</td>
</tr>
<tr>
<td>91</td>
<td>Opinion — Bridging the gap — arbitrage free valuation of derivatives in ALM</td>
</tr>
<tr>
<td>95</td>
<td>Does individual performance affect entrepreneurial mobility? Empirical evidence from the financial analysis market</td>
</tr>
<tr>
<td>107</td>
<td>A new approach for an integrated credit and market risk measurement of interest rate swap portfolios</td>
</tr>
<tr>
<td>113</td>
<td>Risk drivers in historical simulation: scaled percentage changes versus first differences</td>
</tr>
<tr>
<td>123</td>
<td>The impact of hedge fund family membership on performance and market share</td>
</tr>
<tr>
<td>131</td>
<td>Public sector support of the banking industry</td>
</tr>
<tr>
<td>145</td>
<td>Evaluating the integrity of consumer payment systems</td>
</tr>
<tr>
<td>155</td>
<td>A loss distribution for operational risk derived from pooled bank losses</td>
</tr>
</tbody>
</table>
Dear Reader,

No one can deny that the extent and ferocity of the events of the past year or so have been unexpected. We all went from having minor fears about an economic slowdown in Western economies, with the East somewhat shielded and a manageable crisis within the financial sector, to a situation where many are talking about a potential global depression and nationalization of most of the world's major financial institutions. Everyday we are faced with even more worrying news. Yet despite the uncertainty, now is when we need a clear head and ideas about what must be done to survive, and possibly even prosper.

When this paper series with Cass Business School was established in early 2007, we were convinced that many in the financial services sector underestimated the risks inherent in many of the instruments and transactions they were counterparty to, and that more financial discipline was needed to benefit from the array of innovations taking place. We highlighted a number of these concerns in the inaugural issue of the paper series and feel vindicated by the events that have transpired since.

The establishment of this paper series exemplifies the reason we founded Capco in the first place, namely to help the industry in ways that were not previously possible. To help the industry recognize that fascinating formulas don’t necessarily represent accuracy, that operational risk is endemic, and that we have all got a long way to go before we come to grips with the risks each institution faces and the most effective ways of managing them.

This second edition of the Cass-Capco Institute Paper Series on Risk covers the whole spectrum of financial sector risks. A number of papers focus on how risk could be better understood, measured, and managed. The paper series comes to life during our annual conference on April 6th at the Cass Business School, where we hope to see many of you.

The challenges facing our industry have never been greater. That is why publications such as this are essential. We need to take a critical view of what went wrong, objectively identify where the shortfalls are, and ensure that we correct them for the future. These are the objectives of this issue, and have always been the ambitions of Capco and its partners.

It is only through a better understanding of the past that we can make a brighter future. We hope that we have also been able to contribute in our own way to that journey. Obviously, we still have a long way to go before we achieve what we set out to do when we established Capco. But we shall stand shoulder to shoulder with our clients in ensuring that our industry achieves the levels of efficiency that we are certain it deserves. Our hope is that you will also join us in helping shape the future of our industry.

Good reading and good luck.

Yours,

Rob Heyvaert,
Founder and CEO, Capco
The end of hubris

After 40 years of growing confidence about our understanding of risk, many are now questioning the basic fundamentals of how it should be measured, let alone managed. Ever since the options pricing model was developed, so-called financial experts have been engineering exciting new instruments for the financial markets. As the complexity and variety of these instruments grew so did the thirst of the investment community for them. This helped create a vicious circle of demand and hubris. The last 40 years were the hubris years.

It was not only in the financial markets that hubris over our understanding of the functioning of the models prevailed. Economists genuinely believed that they understood how economies operate and had developed models that could influence them. Economists at the IMF sincerely thought that they understood how economic tools could be applied and were certain of their implications.

The events of the past two years have forced everyone to take a step back and reassess their models. Everyone has now realized that the world of economics is far too complex for anyone to be able to influence; that financial risk is dependent on far too many variables to be correctly measured; and that the certainty with which financial and economic experts spoke had no relationship to reality.

We were aware of the risks that were inherent within the global financial system when we first established the Cass-Capco Institute Paper Series on Risk, and hoped that better dialogue between the world of finance and academia would help mitigate them. However, we had no idea that our timing was so perfect, that we were fast approaching the end of the hubris era.

We were not alone in getting caught out by the speed with which many of the stars of the world of economics and finance lost their reputations. Many authors in this issue had no idea when thinking about their articles that they would be so pertinent at the time of publication.

The papers in this edition highlight many of the problems that exist within the models used and provide insights into how they can be mitigated in the future. The topics covered are broad, ensuring that we discuss as many economic areas as possible.

We hope you enjoy reading these articles and that you also make your own contribution by submitting articles to future issues of the Journal.

On behalf of the board of editors
Delta hedging a two-fixed-income-securities portfolio under gamma and vega constraints: the example of mortgage servicing rights

Reducing the poor’s investment risk: introducing bearer money market mutual shares

Financial risk and political risk in mature and emerging financial markets

Estimating the iceberg: how much fraud is there in the U.K.?

Enhanced credit default models for heterogeneous SME segments

The impact of demographics on economic policy: a huge risk often ignored

Risk and return measures for a non-Gaussian world

Medium-term macroeconomic determinants of exchange rate volatility

Risk adjustment of bank stocks in the face of terror

Macroeconomic risk – sources and distributions according to a DSGE model of the E.U.
Delta hedging a two-fixed-income-securities portfolio under gamma and vega constraints: the example of mortgage servicing rights

Carlos E. Ortiz, Chairman, Department of Computer Science and Mathematics, Arcadia University
Charles A. Stone, Associate Professor, Department of Economics, Brooklyn College, City University of New York
Anne Zissu, Chair of Department of Business, CityTech, City University of New York, and Research Fellow, Department of Financial Engineering, The Polytechnic Institute of New York University

Since July 2007, we have witnessed a growing number of mortgages going into default and eventually being foreclosed. Mortgage servicing rights are fees collected by institutions managing mortgages. The yearly fees correspond to a percentage of the outstanding balance of individual mortgages. Typically, an institution collects between 25 and 50 basis points per year (.25% - 5% of the outstanding balance each year). The servicing is a compensation that institutions receive for services that include the collection of the monthly payments, for making sure that the monthly payments are paid on time, and, when necessary, for foreclosing the property when a mortgagor defaults on the property. Banks have been confronted with major losses related to mortgage-backed securities and to the heavy reduction in the volume of mortgage servicing rights.

Ortiz et al. (2008) develop a dynamical hedge ratio for portfolios of mortgage servicing rights (MSR) and U.S. Treasury securities, such that it is readjusted for changes in market rates and prepayment rates. They develop a delta-hedge ratio rebalancing function for three different portfolios, compare the three dynamic hedge ratios, and rank them with respect to the gamma hedge ratio.

In this paper we develop a general model to obtain the optimal delta hedge for a portfolio of two-fixed-income-securities (a1, a2), each a function of the market interest rate y, such that when the value of each of the individual securities changes up or down, because of changes in market rates y, the total value of the portfolio is unchanged. We develop the delta hedge under the constraint of a zero-gamma in order to avoid costs related to the rebalancing of such portfolio.

We first describe in details mortgage servicing rights (MSR), then we develop the model, and finally discuss how our model can be applied to MSR.

Mortgage servicing rights
Because MSRs correspond to a percentage of the mortgages’ outstanding balance their characteristics are the same as those of interest only (IOs). IO securities have values that are both affected by interest rates and prepayment rates. It is interesting to analyze the price/yield relationship of an IO security in order to understand MSRs.

Figure 1 shows the projected scheduled principal (at the very bottom), the unscheduled principal, the interest, and servicing (top) to be paid over time for a 5.5%-FNMA pass-through security. The pass-through security is backed by a pool of mortgages with a current balance of U.S.$52 million, a weighted average maturity of 28.8 years, and a weighted average coupon rate of 6.243%. The cash flows are based on a projected PSA of 50, which corresponds to an annual prepayment rate of 3% (cpr = 3%).

Because the graph in Figure 2 is compressed, it is important, when comparing it to Figure 1, to read the numbers on the vertical axis. Figure 2 shows what happens to the different projected cash flows for a projected 1000 PSA (60% annual prepayment rate). Clearly, the total principal being repaid overtime remains the same (same area under the curve) under the two different prepayment scenarios, however, both the interest and servicing are being significantly reduced for faster prepayment rate. When principal is refinanced, no more interest is paid by mortgagors and banks cannot collect servicing fees for mortgages that do not exist anymore.

Prepayment rates are a function of interest rates. When interest rates decrease, prepayment rate increases and vice versa. Figure 3 graphs the projected cash flows of an IO security over time, for different prepayment scenarios.

Figure 3 is taken from Bloomberg and shows the cash flows of a 9% FHS IO under four different PSA scenarios. CPR stands for constant prepayment rate. A CPR of 5% indicates that mortgage principal is being prepaid at an annual rate of 5%. The prepayment model developed by the Public Securities Association (PSA) is also widely used for a basis of quoting prices on mortgage-backed securities. A 100 PSA corresponds to a 6% cpr, a 200 PSA corresponds to a 12% cpr, and a 500 PSA corresponds to a 30% cpr. In the Figure, PSA ranges from 0% to 395%. When PSA rate is high, more of the outstanding balance is being prepaid, so less IO or MSR is available as a percentage of outstanding remaining balance. This can be
observed for example under PSA 395, the lowest curve in Figure 3. On the other hand, for low PSA, the outstanding balance remains at a greater level, and the derived cash flows stay higher (see top curve for extreme scenario of 0 PSA).

It is important that the reader understands that the value of an IO, or of a MSR, is the present value of the cash flows received over time. Clearly, the lower the cash flows are (due to high prepayment rates), the lower the value is. On the other hand, the higher the cash flows are, due to high market interest rates and therefore low prepayment rates, the higher the value is. This is true only over a range of interest rates (prepayment effect). At some point, however, the discount effect takes over the prepayment effect, and the value of IOs or MSRs will start to decrease. We show the typical value of an IO or MSR as a function of interest rates in Figure 4.

The value of an IO security or a MSR increases when interest rates (y) increase as long as the prepayment effect is greater than the discount effect. When the discount effect takes over, we observe the value decreasing for increases in interest rates. Both IOs and MSRs are very interesting types of securities. Most fixed income securities decrease in value when yields increase. IOs and MSRs do the opposite for a wide range of yields.

S-curve prepayment function

It is important to understand the prepayment behavior in order to value MSR. Periodically, investment banks submit to Bloomberg their expected PSA level for corresponding changes in yield. Figure 5 shows the data submitted by twelve investment banks on their expected PSA levels for corresponding changes in yields ranging from -300 bps to +300 bps, for the same 5.5% FNMA pass-through security we described in the beginning of the paper with Figures 1 and 2. It is interesting to observe how different these projections can be. For a decrease of 300 bps, the projected PSA ranges from 884 to 3125 (a corresponding cpr ranging from 53% to 187.6%).

![Figure 1](image1.png)
![Figure 2](image2.png)
![Figure 3](image3.png)
![Figure 4](image4.png)
![Figure 5](image5.png)
Figure 6 plots for different changes in yield, the corresponding expected PSA level for each investment bank that submitted information to Bloomberg on October 2008 for a specific pool of securitized mortgages. The changes in yield are represented on the horizontal axis, with expected PSA levels on the vertical axis. The curve represents the median for the twelve banks that submitted the data. One can see that the prepayment curve, as a function of changes in yield, has an S-shape. The S-shape prepayment function is common to all banks, but each differed in projecting its magnitude/steepness.

The S-curve shows a steeper slope around the initial market rate (at 0% change in yield), with prepayment rate increasing as market rates continue to drop, until a burnout effect is reached, and the curve flattens, meaning that prepayment rate is no longer increasing as it did in the middle range of market rates decrease. The S-curve also flattens in the high range of market rates. What happens is that prepayment rate decreases with increase in market rates until it reaches a minimum beyond which no further decrease in prepayment rates is observed. The natural level of prepayment rate is reached, that is, the prepayment rate that is independent of market rates, but is a function of mortgagers’ personal events.

We next, express the relationship between prepayment rate (we use CPR for prepayment rate instead of PSA) and the change in basis points. The prepayment rate, CPR, is mainly a function of the difference between the new mortgage rate \(y \) in the market and the contracted mortgage rate \(r \). \(\text{CPR} = a + \left(1 + e^{b(y-r)}\right) \).

We now develop a general model for a two-fixed-income-security portfolio that is delta and gamma hedged against interest rate changes.

Model for portfolio optimization

We have a portfolio of two securities \((a_1, a_2)\). Each security’s value is a function of the market interest rate \(y \). We want to find the optimal share of each security in the portfolio such that: \(\sum_{i=1}^{2} a_i \alpha_i = K \) (1), where \(\alpha_i \) is the weight of security \(a_i \). In order for the value \(K \) of the portfolio, at a specific yield \(y \), to be hedged against any movements in interest rate we need to find the optimal weights for each security in the portfolio, such that when there is a change in market rates the sum of the change in value of each security times its corresponding weight in the portfolio is equal to zero.

We next, develop a general model and apply it to the particular case of portfolios of mortgage servicing rights (MSRs). Consider two functions \(a_i(y), i = 1,2 \) and two coefficients \(\alpha_i, i = 1,2 \). We want the following to hold: \(\sum_{i=1}^{2} \alpha_i a_i(y) = K \) (2).

The values of the functions \(a_i(y) \) are given for every value of \(y \) and we want to find the values of \(\alpha_i \) that will satisfy equation (2), and other conditions of ‘stability’ that we will describe later.

Notation: For any \(f(y) \) let us denote by \(f^{(n)}(y) \) the \(n \)-th derivative of \(f \).

When the \(\alpha_i \)'s are assumed to be constant, the objective is to find for a fixed \(y_0 \), hence for any given value of the \(a_i(y_0) \), values of the constants \(\alpha_i \) such that: \(\sum_{i=1}^{2} \alpha_i a_i(y_0) = K \) (3).

\[(\sum_{i=1}^{2} \alpha_i a_i(y_0))^1 = (\sum_{i=1}^{2} \alpha_i a_i^{(1)}(y_0)) = 0 \] (4), where the second condition represents the constraint that the total sum of the \(\alpha_i a_i(y_0) \) will not change for small changes in \(y \) from the initial value \(y_0 \).

More generally, to obtain an optimal portfolio we need to find the values of the \(\alpha_i \) for \(i = 1,2 \) such that for small changes in \(y \) from the original \(y_0 \), the value of \(\sum_{i=1}^{2} \alpha_i a_i(y) \) will not change from the original value of \(\sum_{i=1}^{2} \alpha_i a_i(y_0) = K \).
For a fixed y_0 there exists a unique solution that optimizes the portfolio of two fixed income securities if: $a_1(y_0)a_2(1)(y_0) - a_1(1)(y_0)a_2(y_0) \neq 0$. As expected, this condition depends only on the values of the functions a_1, a_2 and their derivatives at point y_0. The values for α_1 and α_2, the optimal weights for the two securities that constitute a delta-gamma hedged portfolio, are:

$\alpha_1 = \left[Ka_2(1)(y_0) \right] + \left[a_1(y_0)a_2(1)(y_0) - a_1(1)(y_0)a_2(y_0) \right]$
$\alpha_2 = \left[Ka_1(1)(y_0) \right] + \left[a_1(y_0)a_2(1)(y_0) - a_1(1)(y_0)a_2(y_0) \right]$
If: $a_1(y_0)a_2(1)(y_0) - a_1(1)(y_0)a_2(y_0) = 0$

Then we have no solutions or there exist infinitely many solutions.

Examples of no solutions

It is not unusual to have a portfolio of fixed-income securities that increases in value when market rates decline and decreases in value when market rates rise. We could have, for example, a portfolio composed of a 30-year 8% coupon bond with a 10-year Treasury note. This is a case when it is impossible to delta hedge the portfolio under gamma and vega constraints.

The case of mortgage servicing rights

A delta-hedged portfolio could have a combination of bonds and MSR. We next present the valuation approach developed by Stone and Zissu (2005) that incorporates the prepayment function (S-curve).

Valuation of MSR

The cash flow of a MSR portfolio at time t is equal to the servicing rate s times the outstanding pool in the previous period: $\text{MSR}_t = (s)m_0(1 - \text{cpr})^{t-1}B_{t-1}$ (5), where m_0 is the number of mortgages in the initial pool at time zero, B_0 is the original balance of individual mortgage at time zero, r is the mortgage coupon rate, cpr is the prepayment rate, $m_0(1-\text{cpr})^t$ is the number of mortgages left in pool at time (t), B_t is the outstanding balance of individual mortgage at time (t), and s is the servicing rate.

$V(\text{MSR}) = (s)m_0 \left[\Sigma \left(t - \text{cpr} \right)^tB_t \right] + \left[\left(1+y \right)^t \right] \text{ (6), with } t = 1, \ldots, n \text{ (through the entire paper)}$

Equation (6) values a MSR portfolio by adding each discounted cash flow generated by the portfolio to the present, where n is the time at which the mortgages mature, and y is the yield to maturity.

After replacing the prepayment function in equation (6) we obtain the MSR function as:

$V(\text{MSR}) = (s)m_0 \left[\Sigma \left(t - \left(\alpha/(t+\text{exp}^{-b+t}) \right)^t \right)^tB_t \right] + \left[\left(1+y \right)^t \right] \text{ (6a)}$

Valuation of a bond

The valuation of a bond with yearly coupon and face value received at maturity is represented in equation (4): $V(B) = c \left(\left(1+y \right)^t + \left(1+y \right)^t \right)$ (7), where $V(B)$ is the value of a bond, c is the coupon, Face is the face value, n is the time at which the bond matures, and y is the yield to maturity.

If we now relabel equation (6a) and equation (7) as a_1 and a_2 respectively, and replace them in the equations we derived previously for the optimal α_1 and α_2 respectively, we obtain a portfolio of bonds and of MSR that is delta- and gamma-hedged against small changes in interest rates and corresponding changes in prepayment rates.

Conclusion

With an estimated 10 trillion in outstanding mortgages, MSR generate a significant source of income for banks. This is a significant market with risks that need to be addressed. If not managed properly, banks will have important losses to report. Prepayment risk and interest rate risks need to be carefully evaluated when creating a portfolio of fixed income securities. We have developed a general portfolio of two-fixed-income securities, each with the optimal weight, in order for the portfolio to be delta- and gamma-hedged against small changes in interest rates. We have shown how this model can be applied to portfolios’ MSR.

References

Reducing the poor’s investment risk: introducing bearer money market mutual shares

Robert E. Wright, Clinical Associate Professor of Economics, Department of Economics, Stern School of Business, New York University

Now that micro-credit in general and the Grameen Bank in particular have finally received their due recognition (Yunus and Jolis (1998)), policymakers and international financiers can begin to focus on the other side of the poor’s balance sheet, their assets or savings. As de Soto (2000) and others have pointed out, property rights in many countries remain precarious and formal protection of physical and intellectual property costly. In many places, not even the local currency can be trusted to hold its value for any significant length of time. Billions of people therefore have little ability or incentive to save.

Outsiders cannot impose democracy or property rights protections (Baumol et al. (2007)) and, as Stiglitz (2002), Easterly (2006), and others have argued, the IMF and World Bank can do precious little to thwart bouts of inflation, exchange crises, and financial panics in developing countries. Outsiders can, however, provide the world’s poor with a safe, low transaction cost, and remunerative savings outlet. For several generations, poor people in many places throughout the globe have saved by buying U.S. Federal Reserve notes and the fiat currencies of other major economic powers. Although subject to physical risk (theft, burning, and so forth) and exchange rate fluctuations, such notes typically held their purchasing power much better than local notes or bank deposits denominated in local currencies. As the dollar weakens over the next few decades, as most expect it to do as the U.S. economy loses ground relative to Europe, a revitalized Japan, and the BRIC nations, its allure as a savings vehicle will fade. International financiers can fill the vacuum with a simple product, bearer money mutual shares (B3MS), almost guaranteed to appreciate against all the world’s fiat monies.

Reducing the poor’s investment risk: introducing bearer money market mutual shares

Helping budding entrepreneurs to obtain loans, even for just a few dollars, is beyond noble. It is growth-inducing. Where oligarchs or the grabbing hand of government (Shleifer and Vishny (1998)) are not overpowering, micro-credit can summon forth productive work where before was only despair [Aghion and Morduch (2005), Khandker (1998), Yunus and Jolis (1998)]. Micro-insurance is also not overpowering, micro-credit can summon forth productive or the grabbing hand of government [Shleifer and Vishny (1998)].

For the past several generations and up to the present, millions of such people worldwide have invested in U.S. Federal Reserve notes or the physical media of exchange of other major nations. Although subject to some physical risk of theft, loss, burning, and the like, the high value to bulk of such notes renders them ideal for saving for a personal rainy day or hedging against a local economic meltdown. Returns in terms of local purchasing power are not guaranteed, but Federal Reserve notes are perfectly safe from default risk and highly liquid, sometimes even more liquid than local notes or deposits. Their widespread use as personal savings and business working capital attests to the financial savvy of people worldwide (Allison (1998)).

The U.S. dollar has often been the best available savings option for the world’s poor. Physical currencies are not, however, optimal investment instruments and the long-run outlook for dollar-denominated assets of all stripes is weak. Although the dollar long tended to appreciate vis-à-vis local currencies, short-term depreciations which temporarily reduce the purchasing power of Federal Reserve notes held by the poor are frequent and notoriously difficult to predict (Chinn and Frankel (1994)). Moreover, in the future, the dollar may tend to depreciate as the U.S. economy loses ground relative to a united Europe, a resurgent Japan, and the growth of the BRIC (Brazil, Russia, India, China) economies (Vietor (2007)). In fact, numerous central banks are already beginning to rethink their peg to the dollar and emerging market entrepreneurs will not be far behind (Slater and Phillips (2007)). The poor could respond to a sustained depreciation of the dollar by substituting physical yen, euro, or other currencies in their portfolios but they would still face the risk of adverse exchange rate movements, to wit the appreciation of their local currencies. And of course no fiat currency pays interest or is immune from counterfeiting. Holding another country’s paper currency as an investment instrument is ingenious but hardly foolproof.

International financiers could supply the world’s poor with a similar but ultimately superior instrument, a liquid, low-cost, constantly appreciating bearer instrument with almost no default or counterfeit risk and low levels of physical risk. And they have economic reasons for doing so because the profit potential, especially for an aggressive first-mover, is enormous. Estimates vary but the consensus is that 60 to 70 percent of all Federal Reserve notes outstanding, about U.S.$800 billion in 3Q 2008, circulate outside of the U.S. proper (Allison and Pianalto (1997), Lambert and Stanton (2001)). Supplying the world with liquid bearer savings instruments is, in other words, approximately a U.S.$500 billion business and growing.

Savers in emerging markets would prize a private instrument
more highly than dollars, euro, yen, or other fiat currencies if the returns of holding the private instrument were relatively higher and steadier and if it were as safe and liquid as fiat notes, less easily counterfeited, and less subject to physical risk. Such an instrument currently does not exist, but bearer shares issued by a money market mutual fund (B3MS) in an intelligent way could fit the bill. B3MS could provide the poor worldwide with a low-transaction cost yet remunerative alternative to fiat currencies while simultaneously generating considerable seigniorage profits for the fund(s) that provide the best product.

A money market mutual fund could sell physical bearer shares in itself in exchange for major or local currencies, immediately investing them in safe, short-term government and corporate notes denominated in dollars, euro, yen, and a basket of other currencies. Rather than crediting earned interest to an investor’s account as money market mutual funds traditionally have done, a B3MS fund would simply keep reinvesting its profits. The market value (and net asset value, or NAV) of each bearer share would therefore increase, just as stock prices increase when corporations retain profits instead of paying them out as dividends. Just as traditional mutual fund shares ‘appreciate’ against the dollar (euro, etc.), so too would B3MS appreciate against (buy more of) all of the world’s fiat currencies.

For example, a budding young entrepreneur in Ethiopia might purchase 100 B3MS for 9,000 Birr (roughly, U.S.$90) today, but in a year’s time he will be able to obtain, say, 9,200 Birr for his shares, either by redeeming them at the fund or, more likely, by selling them to another investor who is willing to give more Birr for the shares because their NAV would have increased due to a year’s accrued interest. If a fund emerges with a strong product and a long lead time before competitors appear, it may be able to avoid ever having to redeem its shares because the secondary market for them could grow sufficiently deep that local investors would always find someone to take them off their hands. The shares could begin to pass from hand-to-hand like cash (albeit at slowly increasing local values) and domestic financial institutions could deal in them, perhaps even offering euro B3MS accounts and loans analogous to eurodollar accounts and eurocredit loans.

If this sounds like eighteenth and nineteenth century banking systems in Scotland and America, where banks issued bearer liabilities in the form of non-legal tender convertible notes, it should because the general principle is identical (Bodenhorn (2000, 2003), Checkland (1975), Perkins (1994)). But unlike banks, the assets of which are notoriously difficult for outsiders to value and hence are subject to runs in the absence of deposit insurance (Diamond and Dybvig (1983), Jacklin and Bhattacharya (1988)), money market mutual funds invest transparently and safely and their liabilities are effectively marked-to-market. Money market mutual funds are therefore never run upon in any economically significant sense.

The worst that can happen, barring a global catastrophe, is that the NAV of their shares declines below par, but even that is a rare event (Collins and Mack (1994), Macey and Miller (1992)). Particularly in developing economies, mutual funds are superior to deposit insurance, which induces banks to take on tremendous and potentially destabilizing risks [White (1995)].

If B3MS issuance would benefit both the fund managers and the shareholders, why has the product not yet emerged? One could just as well ask why were exchange traded funds (ETFs) not introduced until the early 1990s? Why did mutual funds not proliferate until after World War II? Why was life insurance the reserve of a tiny handful of people until the 1840s? The answers remain unclear [Eaker and Right (2006), Murphy (2005), Roe (1991)]. Perhaps no one has yet developed the idea or perhaps international financiers fear factors that could prevent B3MS issuers from earning a reasonable profit.

Some potential issuers may fear the wrath of government. Local governments, for example, may not like residents selling their currencies for B3MS. That may be, but governments have already shown that they can do little about it. Dollars and other foreign physical currencies already circulate in large numbers. Most countries realize that they cannot control what residents use for cash and may welcome the substitution of private instruments for dollars, which are a palpable symbol of U.S. hegemony and on an increasingly shaky economic footing. In other words, most governments realize they are already losing seigniorage and would rather lose it to an international mutual company than to the American government. In fact, since the U.S. government has the most to lose it represents the biggest threat to any fund issuing B3MS. Thankfully, offshore havens abound and the U.S. government would be hard pressed to take a principled stand against a private competitor. Another potential problem is that the world’s poor may eschew B3MS for cultural reasons or from mere ignorance. The nature of the shares will certainly need explanation but much of the public education can be handled via websites and at the points of issuance and tender. As Prahalad (2006) and others have shown, the poor are astute value hunters. They will quickly learn the virtues of new savings instruments as they do other new products. Cultural barriers will be minimal in most places but some Muslims may object to holding B3MS because the fund issuing them invests in debt. The shares themselves, however, are equity instruments and no explicit interest is paid, so many Muslims will likely accept them [Obaidullah (2004), Vogel and Hayes (1998)].

Other potential problems are technical. If the fund gains significant market share it will be enormous and may come to influence the world’s money markets. The fund’s managers will have to pay much closer attention to foreign exchange markets than traditional money market mutual fund managers do and may well find it expedient to hedge exchange rate risks using futures markets or other derivatives. Optimal trading strategies are not clear a priori.
so undoubtedly mistakes will be made. The managers must have incentives to earn low and safe returns and disincentives to taking on risks that could endanger the fund’s principal (Wright (2008)).

Fund managers must also devise physical shares that are relatively immune from counterfeiting and the risks of physical destruction, carefully balancing the costs and benefits of different technologies. Paper is a relatively cheap and well-established material but is perhaps too easily counterfeited and destroyed. Shares made from plastic, metal, or composite materials, although more expensive to produce, may prove superior because they would be more robust physically and could incorporate stronger security and convenience features including visual, sub-visual, tactile, sonic, and electronic authentication devices. Although the B3MS concept probably cannot be patented, the technologies incorporated into its physical shares could be, providing a barrier to entry likely strong enough to dissuade free riders (numerous competing funds issuing B3MS) until the initial entrant(s) have gained significant market share. As Baumol et al. (2007) show, such barriers are often crucial considerations for innovative entrepreneurs. It may seem strange to invest in the technology of physical media of exchange in the early twenty-first century. The simple fact of the matter is that breathless predictions of an e-money revolution have proven to be hot air (Palley (2002)). At best, an e-money evolution is underway but it will take decades and perhaps centuries to play out, particularly in the poorer parts of the world. Even in the U.S., Japan, and Europe, most people continue to find physical notes an indispensable way of making some types of payments. Because they are almost always issued by governments or small non-profits, physical notes are far behind the technological frontier. Consider, for example, the lawsuit regarding the unsuitability of Federal Reserve Notes for the visually impaired (http://www.dcd.uscourts.gov/opinions/2006/2002-CV-0864-12-3-41-12-1-2006-a.pdf). A private, for-profit issuer would have tremendous incentives to bring their physical bearer obligations to the bleeding edge.

The micro-finance revolution is a great first step toward breaking the cycle of political violence, oppression, and predation that relegates billions of human beings to lives of desperate poverty. But the world’s poor face other risks as well. The entrepreneurial poor also need liquid, safe, and reliable savings instruments, the value of which are free of local political and economic disturbances. An idea born of centuries of experience with bank note issuance and money market mutual funds, B3MS could emerge as just such instruments. Alone, they are no panacea to widespread poverty, but combined with micro-finance and micro-insurance, bottom of the pyramid strategies (Prahalaad (2006)), and other ‘ground up’ initiatives (Easterly (2006)), they could become an important component of the risk management strategies of the world’s poorest and most vulnerable entrepreneurs.

References

• Allison, T. E. 1998, “Testimony of Theodore E. Allison: overall impact of euro banknotes on the demand for U.S. currency,” Before the Subcommittee on Domestic and International Monetary Policy, Committee on Banking and Financial Services, U.S. House of Representatives, October 8
• Baumol, W. J., R. R. Litan, and C. J. Schramm, 2007, Good capitalism, bad capitalism and the economics of growth and prosperity, Yale University Press, New Haven
• Checkland, S. G., 1975, Scottish banking: a history, 1695-1973, Collins, Glasgow
• Chinn, M., and J. Frankel, 1994, “Patterns in exchange rate forecasts for twenty-five currencies,” Journal of Money, Credit and Banking, 26,4, 759-770
• Collins, S., and P. Mack, 1994, “Avoiding runs in money market mutual funds: have regulatory reforms reduced the potential for a crash?” Finance and Economics Discussion Series, Board of Governors of the Federal Reserve System, No 94-14
• Easterly, W., 2006, The white man’s burden: why the west’s efforts to aid the rest have done so much ill and so little good, Penguin Press, New York
• Mihal, G., 2007, “Insurers tap world’s poor as new clients,” Wall Street Journal, July 11, B4A
• Perkins, E., 1994, American public finance and financial services, 1700-1815, Ohio State University Press, Columbus
• Wright, R. E., 2006, “How to incentivise the financial system,” Central Banking, 19:2, 65-68
Financial risk and political risk in mature and emerging financial markets

Wenjiang Jiang, Professor, School of Mathematical Sciences, Yunnan Normal University, China
Zhenyu Wu, Associate Professor, Edwards School of Business, University of Saskatchewan, Canada

While the importance of managing financial risk in industrialized countries has been realized for many years, financial integration brings fresh attention to the risk management issues in emerging financial markets. Since the first era of globalization, emerging markets have been playing increasingly important roles in the global economy. As the pace of international investments in emerging markets increases, the effects of policy change and political risk on asset prices become more critical to international investors. Consequently, this subject has attracted increasing attention in recent years, and one of the typical examples is the impact of government policies on the Chinese financial markets.

Furthermore, the increasing popularity of globalization has made interactions among international financial markets more significant. For example, the collapse of prices on NASDAQ in 2000 impacted major financial markets in various countries. Thus, investigating the price behaviors of financial securities in a financial market affected by the changes in others is of also interest.

It is widely believed that developing a model which is sufficiently robust for measuring risk in both mature and emerging financial markets is of importance for both academic researchers and practitioners. Jiang et al. (2008) propose a time-series model (JWC model hereafter), which outperforms traditional GARCH (generalized autoregressive conditionally heteroskedastic) models. This is mainly because the JWC model relaxes some assumptions made in GARCH models and allows more flexibility to characterize price behaviors, which enables risk to be measured more accurately.

In this article, we investigate the validity and robustness of the JWC model in financial markets at different stages of development. After demonstrating the effects of the falling prices on NASDAQ in 2000 on major U.S. markets, we illustrate the influences of policy changes in China on behaviors of market indices. Therefore, results presented in this study do not only add to the academic literature on risk management, but also provide important implications for policy makers and international investors.

Parameter estimation

To measure risk and to characterize price behaviors in financial markets, Jiang et al. (2008) develop a time-series model based on quantile distributions. The JWC model outperforms traditional GARCH models mainly because of the advantages of quantile distributions, which take into account multiple features of risk, such as location, scalar, tail order, and tail balance, and provide flexibility for risk measurement (Jiang (2000), Deng and Jiang (2004), Jiang et al. (2008)).

According to the JWC model, $X_t \left(\log P(t)/P(t-1) = \delta_t \log \left(U_t^{(l)}/(1 - U_t^{(l)}) \right) (t\alpha) + \mu(t) \right)$

where $\alpha_t = f(X_{t-p}, \alpha_1, \alpha_q, \alpha_p)$ (2)

and $\beta_t = g(X_{t-p}, \beta_1, \beta_q, \beta_p)$ (3)

$X(t)$ denotes the log return of a security in day t, $P(t)$ is the adjusted close price on that day, α is the tail order which determines the volatility of the security price, β is the tail balance adjuster which indicates the probability of making profit, μ describes the location, and δ measures the scaling. To measure risk based on historical price behaviors observed, the classic maximum likelihood estimation (MLE) is adopted by Jiang et al. (2008), while we will use the Q-Q estimation in the examples presented below.

As pointed out in Jiang (2000) and Jiang et al. (2008), the quantile distribution has an explicit density function, which then guarantees a closed-form likelihood function for the quantile function-based JWC model. Therefore, the likelihood inference is as straightforward as it is in the classic GARCH models presented in the extant research, and some initial values, such as α_0 and β_0, need to be predetermined when the JWC model is applied. The strategy chosen by Jiang et al. (2008) for getting these initial values is to choose a relatively stable period, view the time series as if they are an i.i.d. sequence from the probability law of quantile distribution, and then estimate the parameter values. While the MLE is generally adopted for estimating parameter values, the existence of an explicit quantile function in the JWC model allows us to use a more robust estimation method, the Q-Q estimation first proposed by Jiang (2000). This method is a simultaneous-based estimation scheme, and it provides reliable estimation in the presence of a closed-form quantile function in the theoretical distribution. Technically, the Q-Q method is solely based on the advantages of the quantile models, and is a mechanism directly matching quantile functions of theoretical and empirical distributions by searching the set of parameters that minimize the ‘distance’ between them.

Suppose that a distribution class $(F(x; \theta), \Theta)$ is parameterized by the vector θ. A member of $F(x; \theta)$ with unknown θ generates a series of observations Y_1, Y_2, \cdots, Y_n. We also assume that $F(x; \theta$) can be simulated for any given θ. The Q-Q estimation method infers θ from Y_1, Y_2, \cdots, Y_n by solving the optimization problem $\min_{\theta \in \Theta} f(R_{(Y)}^{(l)}, \cdots, R_{(Y)}^{(l)}, T_{(X)}^{(l)}, T_{(X)})$ (4), where $f(\cdot)$ is an appropriate score function, with the most common choice being the L_1 or L_2 norm. $\Delta(X_{(n)}^{\alpha}, X_{(n)}^{\beta})$ is simply a set of simulated sample of $F(x; \theta)$ for a given θ, $F_m:(X, q_0, q_2, \cdots, q_q)$ denotes the set of probabilities for which the quantiles are obtained. $R_{(Y)}^{(l)}, \cdots, R_{(Y)}^{(l)}$ and $T_{(X)}^{(l)}$ denote the probability scores for which the quantiles are obtained.
Jiang (2000) uses sample forms of \(f(\cdot) \) such as \(\min_{\vartheta \rightarrow \Theta} \) that of the S&P500 index was 0.005. The average over the observation period with 100 trading days was 0.001, while trading days from December 30, 1999 to May 22, 2000.

The observations presented in Figures 1 and 2 are based on S&P500 within a country and among different countries have been attracting more attention. Investing in international financial markets is an effective way of diversifying risk [Erb et al. (1996)]. A typical example is the fall of the NASDAQ market in 2000 and its effects on some major financial markets in the U.S.

Financial risk: evidence from the U.S. markets

With increasing globalization interactions among financial markets, one of the possible reasons is that the Dow Jones Industrial Average index consists of 30 of the largest and most widely held public companies in the U.S., and the effects of the NASDAQ collapse on these companies were not as significant as those included in the S&P500 index. One of the possible reasons is that the Dow Jones Industrial Average index was a better candidate of short-term investment than the Dow Jones Industrial Average index. In other words, at that time, S&P500 was a better target than the Dow Jones Industrial Average index over that period was 0.007, while that of the S&P500 index was -0.011.

Figure 1 illustrates the indices, log returns, and \(\alpha_t \) and \(\beta_t \) series of the Dow Jones Industrial Average index within this period, while Figure 2 illustrates those of the S&P500 index during the same period. According to these two figures, we find that the risk carried by \(\alpha_t \) of the S&P500 index was not as stable as that of the Dow Jones Industrial Average index. In addition, at the time of the fall of the NASDAQ index, the profile of \(\beta_t \) of the S&P500 index showed a more dramatic change than that of the Dow Jones Industrial Average index. In other words, at that time, S&P500 was a better candidate of short-term investment than the Dow Jones Industrial Average index was. One of the possible reasons is that the Dow Jones Industrial Average index consists of 30 of the largest and most widely held public companies in the U.S., and the effects of the NASDAQ collapse on these companies were not as significant as those included in the S&P500 index.

Political risk: evidence from the Chinese markets

Pioneering studies [such as Ekern (1971), Aliber (1975), Bunn and Mustafaoglu (1978), and Dooley and Isard (1980)] have considered political risk as one of the most important factors in the field of international investments. As globalization has become more popular, the literature on political risk has been significantly enriched, with the typical research focusing on international asset markets [Stockman and Dellas (1986), Gemmill (1992), Bailey and Chung (1995), Perotti and van Oijen (2001), Kim and Mei (2001)], corporate governance in international investments [Philips-Patrick (1989), Ellstrand et al. (2002), Keillor et al. (2005), and foreign direct investments [Ma et al. (2003), Mudambi and Navarra (2003), Busse and Khefeker (2007)].

Recently, factors in emerging markets have attracted increas-
The two indices in Chinese stock markets are Shanghai Composite and Shenzhen Composite Index, respectively. Estimating parameters \(\theta = (a_0, a_1, b_1, C_0, C_1, d_1, d_0, \mu) \) using the information from June 26, 2000 to April 11, 2001 and JWC(1,1,1), we find that the average \(\alpha \) of the Shanghai Composite index over the observation period was 0.013, while that of the Shenzhen Composite index was 0.002. The average \(\mu \) of the Shanghai Composite index over that period was 0.004, while that of the Shenzhen Composite index was 0.007.

Figure 3 illustrates the indices, log returns, and \(\alpha_t \) and \(\beta_t \) series of the Shanghai Composite index within the observation period with 100 trading days, and Figure 4 illustrates those of the Shenzhen Composite index during that period. The Figures show that after the policy of reducing state-owned shares was in effect, both indices dropped significantly and consistently. According to the profiles of \(\alpha_t \) and \(\beta_t \) over the observation period illustrated, the risk carried by \(\alpha_t \) of the Shenzhen Composite index after the policy was changed was much more dramatic than that of the Shanghai Composite index. As shown by the \(\beta_t \) profiles of these two indices, in the meantime, the Shenzhen Composite index was a better candidate for short-term investments than the Shanghai Composite index after the policy was in effect. This may be caused by the fact that most of the companies on the Shenzhen Stock Exchange are relatively small- and medium-sized, while those on the Shanghai Stock Exchange are relatively large. In other words, political risk has been shown to have more significant effects on small- and medium-sized companies.

Conclusion

With the increasing global financial integration, international investments become more important. Consequently, measuring risk in the various types of markets accurately plays a crucial role in modern financial management. This study focuses on the application of the newly-proposed JWC time-series model for measuring risk in both mature and emerging markets, and shows that the JWC model is valid and robust for financial markets at different stages of development. Illustrating the effects of the fall in the NASDAQ market on the U.S. financial markets and the influences of policy changes on the Chinese markets, respectively, we address the financial risk in mature markets and political risk in emerging markets. Behaviors of four major market indices, the Dow Jones Industrial Average, the S&P 500, Shanghai Composite Index, and Shenzhen Composite Index, are used to highlight these effects. The Q-Q estimation method is adopted to implement the JWC model. We believe that this study not only provides a parameter estimation method for measuring risk accurately in financial markets, but it also has important policy applications in international investments and financial forecasting. Further studies, such as portfolio optimization and asset allocation based on the JWC model, will also be of interest.

2 We also estimate the parameter values from September 6, 2001 to December 31, 2002. Due to space limitations, however, we only present those from April 12 to September 5, 2001.
References

Estimating the iceberg: how much fraud is there in the U.K.?

David J. Hand
Professor of Statistics, Department of Mathematics, Imperial College, and Institute for Mathematical Sciences, Imperial College

Gordon Blunt
Director, Gordon Blunt Analytics Ltd

Abstract
Measuring the amount of fraud is a particularly intractable estimation problem. Difficulties arise from basic definitions, from the fact that fraud is illicit and deliberately concealed, and from its dynamic and reactive nature. No wonder, then, that estimates of fraud in the U.K. vary by an order of magnitude. In this paper, we look at these problems, assess the quality of various figures which have been published, examine what data sources are available, and consider proposals for improving the estimates.
Newspapers and other media frequently carry stories about fraud. Often these are about specific cases, but sometimes they are general articles, either about particular kinds of fraud (i.e., benefits fraud, credit card fraud, tax fraud, insurance fraud, procurement fraud), or about the extent of fraud. While communications media have the nominal aim of keeping us informed, it is well known that this reporting is not without its biases. There is, for example, the familiar tendency to report news preferentially if it is bad. In the context of fraud this has several consequences. It means that many news stories have frightening or threatening overtones: the risk of falling victim of identity theft, the discovery that a batch of medicines or car parts are fake, the funding of terrorist activities from low level credit card fraud, and so on. It also means that there may be a tendency for numbers to be inflated. A report that 10% of drugs on the market are counterfeit is much more worrying, and likely to receive wider circulation than one reporting only 0.1%. To steal an old economics adage, we might say that there is a tendency for bad numbers to drive out good. This paper is about the difficulty of obtaining accurate estimates for the amount of fraud in the U.K.

Reporting bias is just one of the difficulties. Others, which we discuss in more detail below, include:

- **The definition of fraud** — statisticians know only too well the problems arising from imprecise, ambiguous, or differing definitions. In the case of fraud it is not simply that insufficient care has been taken in defining what is meant by ‘fraud,’ it is also that in some situations people may disagree on whether an activity is fraudulent or legitimate. For example, some people might regard certain ‘complementary medicines’ as legitimate, while others might regard them as fraudulent. Moreover, an activity may or may not be fraud depending on the context in which it is carried out. And even in apparently straightforward cases there can be ambiguity about costs. For example, if goods are obtained by fraudulent means, should the loss be the cost of producing the goods, the price they would be sold for, the retail value, or the wholesale value, and should VAT be included?

- **The fact that some, possibly much, fraud, goes unreported** — this particular problem is the one we have chosen to highlight in the title. Missing data and nonresponse are, of course, problems with which statisticians have considerable familiarity.

- **In an increasingly complex society, there are increasing opportunities for fraud** — our ancestors did not have to worry about credit card fraud, ATM theft, insurance scams, and certainly not about more exotic activities such as phishing, pharming, or 419 fraud. Such frauds ride on the back of technologies designed to make things more convenient, and generally to provide us with richer opportunities, but which can be corrupted for dishonest or unethical use. As the Office of Fair Trading survey of mass marketed scams [OFT (2006)] put it: “Mass marketed consumer fraud is a feature of the new globalized economy. It is a huge problem: international in scope, its reach and organization.”

- **Fraud prevention tools themselves represent an advancing technology** [Bolton and Hand (2002), Weston et al. (2008), Juszczak et al. (2008), Whitrow et al. (2008)] — but fraudsters and law enforcement agencies leapfrog over each other: fraud is a reactive phenomenon, with fraudsters responding to law enforcement activity, as well as the other way round. This means that the fraud environment is in a state of constant flux which in turn means that any estimates of the size of the problem are likely to be out of date by the time they are published.

- **Difficulty in measuring the complete cost of fraud** — although this paper is concerned with the amount of fraud, and it measures this in monetary terms, it almost certainly does not measure the complete costs attributable to fraud. For example, the need to deter fraud by developing detection and prevention systems and employing police and regulators involves a cost, and there is a cost of pursuing fraudsters through the courts. Moreover, there is a hidden loss arising from the deterrent effect that awareness of fraud causes on trade — for example, an unwillingness to use a credit card on the Internet. This is one reason why, for example, banks may not advertise the amount of fraud that they suffer. Unfortunately, this understandable unwillingness to divulge or publicize fraud further complicates efforts to estimate its extent.

- **There are also many types of fraud for which estimating or even defining the cost in monetary terms is extremely difficult** — for example, a student who cheats in an examination or plagiarizes some coursework may unjustifiably take a job. There is clearly a loss to whoever would have been awarded the job if this student had not taken it, but estimating, or even identifying this loss would appear to be impossible. Likewise, someone who claims a qualification that they do not have, or obtains employment on the basis of a fake degree from a ‘degree mill’ is acting fraudulently but determining the cost may be very difficult. And what is the cost of electoral fraud or a fake identity card?

Superficially, fraud may appear to be a less serious crime than crimes of violence such as murder or assault, or thefts such as burglary or carjacking. But this may not be true. Take just one kind of fraud, identity theft, as an example. By impersonating you in applications, fraudsters may obtain credit cards, telephone accounts, bank loans, and even mortgages and real estate rentals, all under your name. Indeed, even worse than this, if stopped for speeding or charged with some crime, fraudsters may give your identity, with your name. Indeed, even worse than this, if stopped for speeding or charged with some crime, fraudsters may give your identity, with serious potential consequences for you. One report says that it typically takes up to two years to sort out all the problems, and reinstate one’s credit rating and reputation after identity theft has been detected. The cost of fraud may be direct — as in when fraudulent use of ATM machines leads to money being stolen from your bank account — or it can be indirect — as in when someone does not buy a railway ticket or drives without a license. In any case, fraud costs, even if the cost is hidden in higher ticket prices or an inability to get credit (meaning no mortgage, no credit cards, etc.) while it is being...
Estimating the iceberg: how much fraud is there in the U.K.?

This estimate apparently has its genesis in a report on economic ‘unparalleled levels of sophistication’ [The Times of London (2006)]. That £40 billion was a conservative figure and that fraud had reached £72 billion. Mike O’Brien, the Solicitor-General, said it was higher, and one leading law firm claims [Mishcon de Reya, (2005)] that the true amount of fraud was probably more than £16 billion. In 2004, Norwich Union suggested that the cost had risen to more than £16 billion.” [Hansard (2006)].

The Fraud Advisory Panel (2006) estimated the cost of fraud to be £16 billion. However, this is the same as Hill’s (2005) estimate, which was the Home Office’s estimate from Jones et al. (2000) but updated for inflation. The fact is, however, that the fraud environment is a highly dynamic one. Changes arising from inflation are likely to be small relative to other changes, as can be seen from the magnitude of the changes in relatively well-defined fraud areas, such as credit card fraud. In fact, the rapid rate of change makes total amount of fraud very difficult to estimate. On the one hand it means that any published figures are likely to be incorrect, and on the other it means that figures collated from different sources are likely to refer to a range of periods [Levi et al. (2007)].

Statistics have a role to play in understanding and preventing fraud at a wide variety of levels, ranging from sophisticated detection systems at one end [Bolton and Hand (2002), Fawcett and Provost (2002), Phua et al. (2005)] to estimating the extent of the problem at the other. This paper is concerned with the latter.

What counts as fraud?

Here are some definitions of fraud:

- “Criminal deception; the use of false representations to gain an unjust advantage. A dishonest artifice or trick.” (Concise Oxford Dictionary)
- “…the deliberate misrepresentation of circumstances or the deliberate failure to notify changes of circumstances with the intent of gaining some advantage.” (Benefits Fraud Inspectorate)
- “The use of deception with the intention of obtaining advantage, avoiding an obligation or causing a loss to a third party.” [Fraud Advisory Panel (1999)]
- “Fraud is the obtaining of financial advantage or causing of loss by implicit or explicit deception; it is the mechanism through which the fraudster gains an unlawful advantage or causes unlawful loss.” [Levi et al. (2007)]
- “…obtaining goods, services or money by deceptive means…” Home Office website

While the intent of these definitions is clear enough, the practical application of them is less clear. There is a huge gap between these

sorts out. Furthermore, much fraud does not occur in isolation. Consider the online banking fraud process. This has several steps, requiring (1) collecting data using phishing, keyloggers, Trojans, etc, and recruiting ‘mules’ to transport money if necessary, (2) validating data, checking passwords, investigating the sizes of deposits, (3) seeing if there is scope for identity theft, (4) deciding how to attack, (5) stealing the money, and (6) transferring and laundering the money, and selling identity information. It is very clear from this that a highly sophisticated structure is needed to operate it – and this is characteristic of banking fraud: it is typically not the work of an individual, but of organized gangs. And organized gangs are often linked to other kinds of organized crime.

With the above as context, it is perhaps not surprising that there are many different estimates of the size of fraud in the U.K. These estimates vary widely – at least by an order of magnitude, from under £7 billion to £72 billion [Jones et al. (2000), Hill (2005), Mishcon de Reya (2005), RSM Robson Rhodes (2004), KPMG (2007)]. The report by Jones et al. (2000), prepared for the Home Office and Serious Fraud Office by National Economic Research Associates (NERA, and sometimes referred to as the NERA report), appears to be the most thorough examination of the different types of fraud that take place and the statistics derived from them, at the time it was written. Certainly, this report has clearly been the source of one of the most widely quoted estimates of fraud in the U.K. – £13.8 billion per year. Although the report was published in 2000, this figure was cited for several years. For example, at the time of writing, it had only just been replaced by a more recent figure [Levi et al. (2007)] on the Home Office’s website. More recently, the Legal Secretariat to the Law Officers [LSLO (2006)] report gave estimated fraud losses as £14 billion, again taking the figure from Jones et al. (2000). And at a recent British Bankers’ Association meeting on fraud in June 2007 the figure was trotted out again, without attribution or apparent recognition that the fraud environment had changed and things had moved on.

To make matters worse, the £13.8 billion figure was the ‘high’ estimate from Jones et al., with the low estimate shown as £6.8 billion. The fact that the high estimate is cited so often, with no mention that it is the high estimate, illustrates the point we made above: that there is a tendency for higher estimates to be propagated in preference to lower estimates. On these grounds, one might suspect the true value to be lower than the commonly cited figure. However, most other sources suggest that the high estimate is likely to be too low. For example, a report in the Times of London said ‘the Attorney General’s deputy has admitted that the true amount [of fraud] was probably higher, and one leading law firm claims [Mishcon de Reya, (2005)] that it could be £72 billion. Mike O’Brien, the Solicitor-General, said that £40 billion was a conservative figure and that fraud had reached ‘unparalleled levels of sophistication’ [The Times of London (2006)]. This estimate apparently has its genesis in a report on economic crime, undertaken with the endorsement of the Home Office and the Fraud Advisory Panel [RSM Robson Rhodes (2004)]. It was comprised of an estimate of £32 billion for fraudulent activity, plus an estimated £8 billion that was spent to combat the problem. O’Brien, when speaking earlier in Parliament, however, made no mention of the higher figure: “We know that fraud has a massive impact on the United Kingdom economy, it is difficult to give precise figures, because fraud is by nature secretive, but in 2000 National Economic Research Associates estimated that it cost the U.K. economy £14 billion. In 2004, Norwich Union suggested that the cost had risen to more than £16 billion.” [Hansard (2006)].

The Fraud Advisory Panel (2006) estimated the cost of fraud to be £16 billion. However, this is the same as Hill’s (2005) estimate, which was the Home Office’s estimate from Jones et al. (2000) but updated for inflation. The fact is, however, that the fraud environment is a highly dynamic one. Changes arising from inflation are likely to be small relative to other changes, as can be seen from the magnitude of the changes in relatively well-defined fraud areas, such as credit card fraud. In fact, the rapid rate of change makes total amount of fraud very difficult to estimate. On the one hand it means that any published figures are likely to be incorrect, and on the other it means that figures collated from different sources are likely to refer to a range of periods [Levi et al. (2007)].
Informal definitions and crisp operationalizations minimizing ambiguities. To overcome this, one might think that one could appeal to a legal definition. The extraordinary fact is, however, that there was no legal definition in the U.K. until the Fraud Act of 2006. (“Following the enactment of the 2006 Fraud Act, there is for the first time a legal definition of fraud,” National Audit Office: Good Practice, http://www.nao.org.uk/Guidance/topic.htm (accessed 10th November 2007)). This Act identifies three classes of fraud: false representation, failing to disclose information, and abuse of position. The key component of the definition is given in the extract from the Act shown below (Fraud Act (2006)).

Fraud by false representation

(1) A person is in breach of this section if he—
 (a) dishonestly makes a false representation, and
 (b) intends, by making the representation—
 (i) to make a gain for himself or another, or
 (ii) to cause loss to another or to expose another to a risk of loss.

(2) A representation is false if—
 (a) it is untrue or misleading, and
 (b) the person making it knows that it is, or might be, untrue or misleading.

(3) ‘Representation’ means any representation by words or conduct as to fact or law, including a representation as to the state of mind of—
 (a) the person making the representation, or
 (b) any other person.

Fraud by failing to disclose information

A person is in breach of this section if he—
 (a) dishonestly fails to disclose to another person information which he is under a legal duty to disclose, and
 (b) intends, by failing to disclose the information—
 (i) to make a gain for himself or another, or
 (ii) to cause loss to another or to expose another to a risk of loss.

Fraud by abuse of position

(1) A person is in breach of this section if he—
 (a) occupies a position in which he is expected to safeguard, or not to act against, the financial interests of another person,
 (b) dishonestly abuses that position, and
 (c) intends, by means of the abuse of that position—
 (i) to make a gain for himself or another, or
 (ii) to cause loss to another or to expose another to a risk of loss.

(2) A person may be regarded as having abused his position even though his conduct consisted of an omission rather than an act.

Needless to say, despite its attempt at precision, this Act cannot characterize all the niceties of fraud and it certainly does not attempt to characterize all its varieties. Going beyond the Act, there are further statistical complications of definition. For example, under the Home Office ‘Counting Rules for Recorded Crime’ (Jones et al. (2000)), if a stolen credit card is used in multiple distinct stores or branches of a store then multiple offences are recorded, but if the card is used in several different departments of a single store (so there is a ‘single victim’), only one offence is recorded.

There may also be subtleties about exactly who the victim is. If money is collected for a non-existent charity, for example, no person or organization is out of pocket, even if the intentions of the donor have not been fulfilled. In general, sometimes frauds enter a database more than once, or are entered into multiple databases which are subsequently merged (Levi et al. (2007)), so that unless it is recognized that they are alternative descriptions of the same event, the fraud count is incorrectly inflated. Double counting can also arise when fraud is experienced by one person or organization, with the cost being passed onto another, with both recording the fraud.

At a higher level, there is sometimes a subtler ambiguity about whether an offence is or should be classified as fraud or not. For example, if someone takes out a loan with the intention of declaring bankruptcy to avoid having to repay, then, while it is clearly fraudulent, it might alternatively be classified simply as default due to bankruptcy. Since, moreover, one is unlikely to be able to discover the original intention of the borrower, one would not be certain of the fraudulent intent. Similarly, the ‘Counting Rules’ referred to above specifically state that “Fraudulent use of cash (ATM) cards to obtain money from a cash machine should be recorded as theft from an automatic machine or meter.” As ‘thefts,’ these may not appear in fraud statistics.

Intent, of course, lies at the heart of fraud. Someone who uses their credit card legitimately, but then reports it as stolen prior to the purchases has, by the act of reporting, transformed the transaction from legitimate into fraudulent. The similar problem of insurance fraud is increasing.

Approaches to estimating the level of fraud

The previous sections have established that measuring the extent and cost of fraud is extremely difficult, for a variety of reasons. And yet, if sensible public policies are to be produced, some measure, even if with wide uncertainty bands, is necessary. In general, if one is going to attempt to estimate the size of the entire corpus of fraud in the U.K. one needs to ensure that no complete categories of fraud are omitted. Thus a list, taxonomy, or typology is necessary. This will also help to resolve any ambiguities or uncertainties about whether something should be classified as fraud. To take just one example, certain foodstuffs have names associated with
particular geographic regions, and it is arguably fraudulent to sell foods under the same name if made elsewhere, even if made by the same process. At the very least this could represent brand infringement. The Times of London reported an example of this in its 29th of June 2007 edition [Owen (2007)], with the Italian farmers’ union Coldiretti launching a campaign against ‘global food fraud.’ Sergio Marini, head of Coldiretti, estimated the ‘trade in fake Italian foodstuffs’ to amount to €34 billion (€50 billion) per year, saying “given that Italy’s food exports are worth €17 billion a year, this means that three out of four products sold as Italian are fraudulent.”

Levi et al. (2007) have attempted to produce such a typology of fraud, based on the sector and subsector of the victim. On this principle, they make a broad distinction between private and public fraud, with the former including financial, non-financial, and individuals, and the latter including national bodies, local bodies, and international (i.e., against non-U.K. organizations). Taking this to a more detailed level, within the domain of banking fraud, the British Bankers’ Association [BBA (2005)] describes the following broad categories of fraud:

- Corporate and large scale
- Computer and cybercrime
- Customer account
- Lending and credit
- Plastic card
- International
- Securities and investment
- Insurance
- Identity
- Internal fraud and collusion

And, taking it to a still finer level, now within the sub-domain of plastic card fraud, we can distinguish between

- Card not present fraud (phone, internet, mail)
- Counterfeit cards (skimmed, cloned)
- Stolen or lost cards
- Mail non-receipt
- Card identity theft, fraudulent applications
- Card identity theft, account takeover

Note that, at any level of such taxonomy, there is scope for ambiguity and intersection between the categories. For example, at the level of plastic card fraud in banking, a fraud might fall into both stolen and mail non-receipt categories. While it is possible to ease such issues by lengthy and painstaking definitions, some uncertainty is likely to remain.

We noted above that fraud losses arise in various ways. It is convenient to categorize these as (i) direct or indirect financial loss arising from the fraud and (ii) prevention, detection, and other costs associated with coping with fraud. Category (ii) costs are sometimes referred to as resource or opportunity costs, since they represent resources which could be spend on other activities if they did not have to be spent on fraud. Our main concern is with category (i). Category (ii) is much harder to assess. Jones et al. (2000) and Levi et al. (2007) distinguish between bottom-up and top-down methods of estimating fraud costs. A bottom-up approach starts from the victim level and attempts to produce an aggregated estimate of total fraud, perhaps via tools such as surveys or using organizational data (i.e., credit card company data on fraud incidence). The top-down approach is less clearly defined, but would be based on overall measures, perhaps measures such as the perceived risk of making an investment, which would necessarily include the risk of fraud. Jones et al. (2000) conclude that “on balance, we do not believe that a top-down approach is likely to produce meaningful estimates of the cost of fraud in the U.K.”

The study by Jones et al. (2000) used data from the following sources (the types of fraud are shown in parentheses):

- Criminal Justice System (giving the number and some costs of offences)
- Serious Fraud Office (large scale)
- Department of Social Security (benefit)
- Benefit Inspectorate (benefit)
- Audit Commission (Local Authority)
- National Audit Office (National Health Service, Local Authority)
- HM Treasury (Civil Service, Customs & Excise)
- Inland Revenue (tax)
- Association of British Insurers (insurance)
- Association for Payment Clearing Services, APACS (financial)
- BBA (financial)
- CIFAS, which used to be the Credit Industry Fraud Avoidance Scheme (financial), but is now simply known by the acronym CIFAS, with apparently no deeper meaning
- KPMG (commercial)
- Ernst & Young (commercial)
- Home Office (commercial)

Note that this study did not try to estimate the extent of undiscovered fraud.

Particular types of fraud may appear in many different guises. OFT (2006) describes fifteen types of mass marketed fraud: prize draw/sweepstake scams; foreign lottery scams; work at home and business opportunity scams; premium rate telephone prize scams; miracle health and slimming cure scams; African advance fee frauds/foreign money making scams; clairvoyant/psychic mailing scams; property investor scams; pyramid selling and chain letter scams; bogus holiday club scams; Internet dialer scams; career opportunity (model/author/inventor) scams; high risk investment scams; Internet matrix scheme scams; and loan scams. The Ultrascan Advanced Global Investigations report on ‘advanced fee’ fraud...
Estimating the iceberg: how much fraud is there in the U.K.?

Changes over time
So far we have discussed estimating the extent of fraud at a given time. But, as we stressed in the opening section, the fraud environment is a dynamic and rapidly changing one. This change occurs for several reasons. One reason is the natural fluctuation in the economic climate. Less benign economic conditions might encourage more fraud. Indeed, one might ask how much of the current U.S. sub-prime crisis can be attributed to overstatement of ability to repay in mortgage applications, which did not become evident until interest rates increased (and which, showing the subtlety of definition, might have been regarded more as optimism than fraud by some of those making the applications). Another driver is technology. Telephone and Internet banking, while making life easier, also opened up new avenues for fraud. Worse, however, these advances allow fraudsters to work across international frontiers with ease. One can hack into a bank account as easily from Moscow as New York.

At a more specific level, changes in plastic card fraud since 1996 are illustrated in Figure 1. In particular, the rise in ‘card not present’ fraud is striking. This figure illustrates a phenomenon sometimes known as the ‘waterbed effect.’ At least in the banking domain, when detection and prevention strategies deter one kind of fraud fraudsters do not abandon fraud altogether; they change their modus operandi, and switch to other kinds. After all, as noted above, much fraud is perpetrated by organized crime syndicates. It is very apparent from Figure 1 that as some kinds of fraud have declined over time, others have grown. It is not apparent from the breakdown shown in Figure 1, but total plastic card fraud rose from £97 million in 1996 to £505 million in 2004 but fell to £439 and £428 million in the subsequent two years. Within this, there were other changes too. For example, U.K. retail ‘face to face’ fraud fell from £219 to £136 to £72 million in the three years 2004-6 and U.K. plastic card fraud fell by 13% in 2006, while overseas fraud rose by 43%. Finally, losses as a percentage of plastic card turnover were 0.095% in 2006, which was considerably less than the 0.141% seen in 2004.

We see from these figures that the nature of fraud can change quickly, as one type of fraud is made more difficult. For example, following the launch of the ‘chip and PIN’ system in the U.K. in February 2006, retail fraud in the U.K. almost halved. On the other hand, fraudulent use of U.K. credit cards abroad, in those countries which had not yet implemented a chip and PIN system, increased – the waterbed effect again. This is very clear from APACS figures comparing the first six months of 2006 to those of 2007, shown in Figure 2 (Fraud abroad drives up card losses, APACS press release, 3rd October, 2007). Figure 2 also illustrates just how dynamic things are, and just how rapidly fraud figures can change: they show an overall 126% increase between the first six months of 2006 and those of 2007 for plastic card fraud abroad.

Other types of fraud are likely to change in equally dramatic ways, in response to changing technology, changing regulations, changing economic conditions, changing political circumstances, and so on.

Figure 3 also shows an interesting change over time. These data are from the Home Office and show trends in recorded fraud crime [Nicholas et al. (2007)]. The lower curves do not change much, but the top two, which are broadly similar, suddenly diverge from 2003/4 in a strikingly complementary way. This could be a waterbed effect, or it could be attributable to a change in definitions in which some vehicle driver document fraud is being reclassified as ‘other fraud.’

A further difficulty arises from the fact, familiar to economic statisticians, that ways of recording data and definitions of recorded data improve over time. The Counting Rules, for example, evolve. This means that time trends have inconsistencies beyond those arising from stochastic errors and the underlying dynamics of fraud activity. Statements about fraud increasing or decreasing over time need to be examined carefully. Such statements are more reliable the more precise and consistent is the definition over time. In particular, this probably means that highly specific indicators are more reliable than large scale aggregate indicators. For example, we can be fairly confident in the time trends of fraud due to counterfeit use

Figure 1 – Changes in plastic card fraud over time in the U.K., by type of fraud
Source: APACS, plastic card fraud

<table>
<thead>
<tr>
<th>Type of fraud</th>
<th>Jan – Jun 2006</th>
<th>Jan – Jun 2007</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.K. retailer (face-to-face)</td>
<td>42</td>
<td>38</td>
<td>-11</td>
</tr>
<tr>
<td>U.K. cash machine fraud</td>
<td>40</td>
<td>17</td>
<td>-57</td>
</tr>
<tr>
<td>U.K. fraud total</td>
<td>161</td>
<td>155</td>
<td>-4</td>
</tr>
<tr>
<td>Fraud abroad</td>
<td>48</td>
<td>109</td>
<td>126</td>
</tr>
</tbody>
</table>

First half of each year shown

Figure 2 – Plastic card fraud (figures are in millions of pounds)
Source: APACS
of credit cards, but less confident in the global statements of total amounts of fraud over all types.

Fraud data sources

In this section, we describe some of the competing sources of information on fraud in the U.K. We use the word ‘competing’ deliberately, because fraud reporting is often distorted by journalists’ need to produce impactful stories. This point was acknowledged by Levi et al. (2007), who remarked that a “...‘free market’ in information about the cost of fraud has developed, with each successive study – however carefully or poorly conducted – being acclaimed for its news about the rise in fraud (and particularly ‘hitech’ forms of fraud): putting pressure on bodies never to come up with a lower figure, even if that lower figure is still much greater than the cost of other sorts of crime.” Such figures, of course, are used by politicians too, as noted by Matthew Parris: “Politicians – who have to be communicators – need striking killer facts” [The Times of London, 22nd July 2006]. This was demonstrated only a few months afterwards, as we described above. No justification was given for either the £40 billion or £72 billion figures, or for the comment about the £40 billion being ‘a conservative figure,’ which implies a much higher ‘true’ amount of fraud.

There are two broad types of source of fraud data available, which we classify as process sources on the one hand, and statistical sources on the other. Levi et al. (2007, p. 17) make a similar distinction, labeling the two kinds of sources administrative and sample survey, respectively. The difference between these names and the ones we have chosen reflects our attempt to broaden the definitions. Process sources are collected as a side product of the normal operations of running a business or whatever. An example would be a credit card operation, where the fact that a transaction is fraudulent will be brought to the attention of the company when the account holder examines the statement. Statistical sources involve an explicit effort to compile them and will often be collected by various government agencies such as the Serious Fraud Office or the police. They may involve surveys or other statistical exercises – and will typically incur an extra cost.

A far as process data are concerned, two sources stand out in terms of the quality of the data they produce. However, illustrating the point made above that better data are obtained by making definitions narrower and more precise, these two sources are restricted to data on plastic card fraud and credit related fraud only. They are APACS and CIFAS. Their raw data come from their member organizations, which include lenders, leasing and hire companies, telecommunications companies, and mail order companies. We have already noted the general problem of double counting when merging data sources, and this is a problem when collating data from member organizations – it is certainly true for these two sources. Apart from that, as far as compiling global figures go, APACS and CIFAS provide “reliable and valid data on the frauds faced by their members” [Levi et al. (2007)].

APACS (the Association for Payment Clearing Services) collects information from its members on plastic card, cheque, and online banking fraud. These members are financial institutions that are involved in the payments market. For example, all of the ‘high street’ banks are members. APACS also coordinates two fraud related committees – the Plastic Fraud Prevention Forum and the Fraud Control Steering Group. APACS is probably the most consistent source of fraud data in its sector – that of U.K. issued plastic cards – but this is a fairly small part of overall fraud, amounting to an estimated 3% of the total. APACS reported £0.5 billion fraud losses on plastic cards, cheques, and online banking in 2006 [APACS (2007)].

CIFAS describes itself as “the U.K.’s fraud prevention service.” It has more than 250 member organizations spread across banking, credit cards, asset finance, retail credit, mail order, insurance, investment management, telecommunications, factoring, and share dealing. Members share information on identified frauds in the hope of preventing fraud in the future. CIFAS claims to be unique and was the first data sharing scheme of its type in the world. Up to 2005, CIFAS reported data in a number of categories – frauds identified, fraud warnings, and financial benefits/savings. From 2006, however, it changed its criteria to be fraud cases identified, financial benefits/losses avoided, and financial benefits. It is important to note that the figures reported by CIFAS are not amounts of fraud, rather they are the amounts of money saved because organizations are members of CIFAS. CIFAS reported £0.7 billion saved by its members because they were alerted to previous frauds by CIFAS warnings. This has risen steadily in the last 8 years [CIFAS (2007)].

A rather different example of a process source is KPMG’s ‘fraud barometer,’ which has been running since 1990, and which considers major fraud cases heard in the U.K.’s Crown Courts, where charges are in excess of £100,000 [KPMG (2007)]. In this sense, it is comprehensive, but it is limited to fraud cases of this value that reach court, and it is likely that even many frauds exceeding this value do not reach court [Higson (1999)], so that there is real selection bias.
And, by definition, this measure excludes undetected fraud. The Barometer is published every six months and shows information on the types of fraud cases and how different parts of the country have been affected. The Fraud Barometer reported fraud of £0.8 billion in 2006, but, according to a press release on 30th July 2007, “Fraud has been affected. The Fraud Barometer reported fraud of £0.8 billion the types of fraud cases and how different parts of the country have show no sign of turning back, according to new figures released today in KPMG Forensic’s Fraud Barometer. For the fourth six-month period in a row, over 100 fraud cases worth £100,000 or more have come to court, with their value up around £600m (£594m) for the third time over that period. This is a higher value in six months than in the whole of 2000, 2001, 2003 or 2004.” This press release also comments that “The biggest cases coming to court over the last six months have been carousel frauds. Four cases were between them worth a huge £440m, with the single largest case valued at £250m alone. But professional criminals have not confined themselves to carousel fraud, with over a third of cases coming to court carried out by professional gangs at a total value of £538m (91 percent of the total value). Frequent areas of activity have included cigarette and duty frauds, benefits scams, ID thefts, bank card frauds, and money laundering.” In carousel fraud the perpetrators register to buy goods VAT-free from other E.U. Member States but then sell them at VAT inclusive prices, before vanishing without paying to the taxman the VAT their customers have paid.

Since process data about fraud is collected as a by-product of collection for some other reason, it is possible that they may not be ideal for assessing fraud levels. When businesses collapse, for example, the thrust of the effort may be in distributing any remaining assets, rather than in exploring the minutiae of causes.

Turning to statistical data sources, these are illustrated by Mishcon de Reya and RSM Robson Rhodes, which used surveys, and arrived at estimates of £72 and £40 billion respectively [Mishcon de Reya (2005), RSM Robson Rhodes (2004)].

To derive the figure of £72 billion for the U.K., Mishcon de Reya took the estimated proportion of American corporate production lost to fraud and scaled this to the U.K.’s Gross Domestic Product (taken from statistics released by the International Monetary Fund). The American estimate was obtained from the U.S.’s Association of Certified Fraud Examiners (ACFE) 2004 Report to the Nation on Occupational Fraud and Abuse (ACFE (2004)), which is one issue of a series of biennial reports. In its 2004 report, the ACFE said “the typical U.S. organization loses 6% of its annual revenues to fraud.”

It will be obvious that there are various uncertainties involved in Mishcon de Reya’s rescaling calculation. Indeed, Levi et al. (2007) said the following about the estimate (without actually naming the company): “The task of extrapolating from limited data – the extent of fraud affecting a particular business sector, or even country, requires much more sophistication than is commonly recognized. Some extrapolations clearly test the bounds of credibility; though there was a caveat in its original report, the much-publicized Association for Certified Fraud Examiners [ACFE, 2002, 2004] study was a membership survey in the U.S. that had only a 10 percent response rate, so to extrapolate from that even to the U.S. let alone the U.K. would defy the normal canons of research.”

RSM Robson Rhodes (now part of Grant Thornton LLP) undertook a survey into economic crime by interviewing 108 people from U.K. companies across all industry sectors. Responses from public and charity sectors were excluded from the analysis. In this sense, it is similar to the Mishcon de Reya report, in that it took respondents’ estimates of crime in their sectors and grossed that up to the U.K. economy as a whole. Details of how this grossing up were carried out do not seem to be available.

Two main types of crime data are published by the Home Office – data from surveys (hence of ‘statistical’ type) and recorded crime data (hence of ‘process’ type). The main source for the former is the British Crime Survey (BCS) and, to a lesser extent, the Offending Crime and Justice Survey (OCJS). Recorded crime data come from the U.K.’s police forces, which provide a list of all ‘notifiable’ crimes they record [Home Office (2007)]. The BCS is a nationally representative household survey of around 50,000 individuals a year and is designed to measure crime against individuals over the age of 16. In 2001 the BCS became a continuous survey, having been previously conducted at various intervals. The OCJS is a survey of crime victims and it covers 5,000 children and young people aged between 10 and 25. It was first undertaken because of concerns that the BCS did not record crimes when the victims were young people. The OCJS was conducted annually between 2003 and 2006. Smith (2006) recommended that coverage of the BCS be extended to cover the under 16 age groups.

Criminal statistics from the Home Office are based on crimes reported to the police, and which the police then decide to record. The Home Office issues rules to police forces about counting crime [Home Office (2007)]. However, as we have already noted, some fraud is not reported to the police [Higson (1999)]. Furthermore, the Home Office reported that only 40% of all BCS crime may be recorded crime (hence of ‘process’ type). The main source for the former is the British Crime Survey (BCS) and, to a lesser extent, the Offending Crime and Justice Survey (OCJS). Recorded crime data come from the U.K.’s police forces, which provide a list of all ‘notifiable’ crimes they record [Home Office (2007)]. The BCS is a nationally representative household survey of around 50,000 individuals a year and is designed to measure crime against individuals over the age of 16. In 2001 the BCS became a continuous survey, having been previously conducted at various intervals. The OCJS is a survey of crime victims and it covers 5,000 children and young people aged between 10 and 25. It was first undertaken because of concerns that the BCS did not record crimes when the victims were young people. The OCJS was conducted annually between 2003 and 2006. Smith (2006) recommended that coverage of the BCS be extended to cover the under 16 age groups.

In this paper, we are concentrating on fraud statistics, and of the
categories published by the Home Office (either from the BCS or recorded crime) 60% are in two broad categories that show little detail – ‘other frauds’ and ‘other forgery.’ The next largest category of fraud – 38% of total recorded fraud – is ‘cheque and plastic card fraud,’ but APACS (APACS, 2007) produces more detailed data on these types of fraud. In a sense, therefore, Home Office data add only 2% to our knowledge of different types of fraud in the U.K. Also, “credit card fraud, for example, is often not reported to the police because victims know that credit card companies will usually deal directly with any loss” (Smith (2006)).

Despite the limitations described above, Smith (2006) noted that the BCS and police recorded crime statistics “are currently the best sources to provide a picture of what is happening to trends in crime, but there remains a range of crimes not captured by current national statistics.”

The iceberg effect

The report by National Economic Research Associates [Jones et al. (2000)] and that for the Association of Chief Police Offices [Levi et al. (2007)] appear to be amongst the best attempts to date at assessing levels of fraud in the U.K. Jones et al. (2000) gave ‘low’ and ‘high’ estimates of different types of fraud, but little discussion of the measurement uncertainties arising from using data from different categories and from different sources. The authors used the ‘low’ estimate where a reporting organization ‘believed’ its figures were an underestimate, but they noted that the latter were often a ‘best guess’ which might have little objective basis. Of course, it is entirely possible that the estimates in Jones et al. (2000) are more reliable than others produced more recently, because of the knowledge and expertise of the contributors.

Levi et al. (2007) summarized each of the sources they had used to provide data. Each of these had to pass a quality threshold and some of them, such as the Office of Fair Trading survey on mass marketed scams [OFT (2006)], gave confidence intervals. In fact, this report comments (p. 30) that “only the OFT study has good data on the economic cost of [fraud against private individuals].” Overall, we cannot escape from the fact that, fraud, by its very nature, is hard to measure. By definition, the size of its large unobserved component is difficult to estimate. For example, from the Financial Services Authority: ‘there is considerable uncertainty about the extent of most types of fraud and dishonesty offences in the financial services industry. There is no national fraud database” [FSA (2003)]. And, from the Serious Organised Crime Agency: “much fraud goes unreported, and despite the fact that frauds can cause companies and individuals significant damage” [SOCA (2006)].

Others have noted that “fraud is not a national police priority” [LSLO (2006)], so that many reported frauds may not be acted upon. For example, Hill (2005) said that, of 4,000 frauds discovered by Norwich Union, only eighteen resulted in criminal prosecutions. Furthermore, according to a report from the BBC on the June 21st, 2007, there are “fewer than 400 police officers outside London dedicated to fraud investigation” (http://news.bbc.co.uk/l/hi/business/6224912.stm). This was in a story headlined ‘card fraud “is not investigated’”, which described how changes by the government now mean that police forces will not investigate plastic card fraud unless the bank involved approaches them. In other words, although fraud has a significant financial impact on the U.K. economy, there is a suspicion that there are decreasing efforts to deter it.

Companies and individuals may be reluctant to report fraud [Higson (1999)] for a variety of reasons, including the following: legal proceedings may be lengthy and costly or there may be uncertainty over the standards required to mount a criminal prosecution, possibly because fraud has not been seen as a priority. We have already mentioned that there may be risks to a company’s reputation if it is suspected of being the target of large amounts of attempted fraud. In some contexts, perhaps especially the corporate world, definitions of fraud may be hazy. Would a fraud be reported if a sales bonus was earned by recording sales early? In general, organizations might find it easier simply to dismiss staff suspected of underhand activity, rather than going through the cost, legalities, and uncertainties of explicitly accusing them of fraud. A fraudster in such a position is hardly likely to argue – and is then free to repeat the exercise elsewhere. While substantial fraud goes unreported, this does not constitute the full extent of the unobserved ‘fraud iceberg.’ Some fraud clearly even goes undetected, with the victim not knowing that they have been defrauded. Classic examples of this would be successful insurance fraud and doubtless some insider trading. Indeed, perhaps the signature of the perfect fraud is that the victim does not even know that they have been defrauded. Clearly estimation of such things is particularly challenging, though we believe there is scope for the development of more sophisticated statistical estimation procedures to estimate the extent of fraud in such cases. Perhaps Levi et al. (2007) deserve the last word here: “data may in many cases provide a poor understanding of the aggregate level of discovered and undiscovered fraud.”

National fraud databases

There is no national fraud database in the U.K. that covers all types of fraud, although there are several national databases that cover particular types of fraud. The National Anti-Fraud Network (NAFN) is a database maintained by local authorities, which “deals with all types of local authority fraud, including housing benefits, student awards, trading standards, grant applications, false invoicing, and internal investigations. Since its formation, NAFN has helped councils identify numerous frauds, and this has resulted in considerable savings to the taxpayer. Currently, approximately 340 Local Authorities in England, Wales, and Scotland are fully paid up members of NAFN.” This represents about 80% of authorities.
The National Health Service has an internal department that is responsible for the detection and investigation of all types of fraud in the NHS – the ‘Counter Fraud & Security Management Service.’ This department regularly produces statistics [NHS CSFMS (2006)].

Hunter is a database produced by a subsidiary of Experian, MCL Software, and is a financial application fraud reporting service. “Hunter detects fraudulent new accounts or claim applications for banks, building societies, finance houses, insurers, government bodies, law enforcement agencies, telecommunication companies, and retailers. It can be used for any type of product including request for mortgage finance, current accounts, card accounts, personal loans, insurance policy applications and claims, benefit claims, student grants and instant credit applications” [Experian (2006)].

In 2006, the Attorney General recommended setting up a ‘National Fraud Strategic Authority’ [LSLO (2006)] which would devise a national strategy for dealing with all aspects of fraud, and a National Fraud Reporting Centre is to be set up.

Conclusion
As we have seen, measuring the amount of fraud suffers from difficulties in defining exactly what constitutes fraud. Definitions vary according to sometimes fairly arbitrary decisions (i.e., bankruptcy not defined as fraud, even if the intention was fraudulent). Because there are so many different kinds of potential fraud, any attempt to measure its amount must start with a taxonomy of types. At least that will reduce the danger of double counting, and hopefully also make it less likely that some major area of fraud will slip through uncounted.

Measuring fraud is further complicated by its dynamic and reactive nature. Fraud statistics change rapidly. Moreover, they do so in response to detection and prevention measures put in place. This effect also manifested itself after the U.K. chip and PIN roll-out, when card crime increased in those European countries which still relied on magnetic stripes and signatures.

Another very important difficulty arises from the intrinsic selection bias in fraud detection. Successful fraudsters do not get caught, and their fraud may pass unrecorded. This means that recorded fraud is an underestimate. Adjustments to try to allow for this necessarily hinge on unverifiable and often dubious assumptions.

Given all these difficulties, it is hardly surprising that estimates of the amount of fraud vary so enormously. This is then compounded by an intrinsic publication bias driving a reporting inflation: larger figures are more likely to get picked up and repeated.

The most reliable figures appear to be those arising from a restricted, small, and well-defined domain. Unfortunately, because of the reactive nature of fraud, one cannot extrapolate from these areas to others. Police resources are not unlimited. In the U.K., around 3% of police resources are spent on fraud and this is unlikely to increase: they have other problems to contend with. This means that an implicit cost-benefit analysis must be conducted when fraud is reported and smaller frauds (up to £5000, according to one source) may not merit the cost of investigation. One potential consequence of this may be increasing official and public acceptance of a background level of fraud. Another implication of it is that, especially as the opportunities for and methods of fraud hinge on more advanced and sophisticated technologies, it is less and less realistic to expect the police to have specialist knowledge of all the different systems. This means that the primary responsibility for prevention must lie increasingly in the hands of the potential victims themselves.
Estimating the iceberg: how much fraud is there in the U.K.?

References

• ACFE, 2002, “Report to the nation on occupational fraud and abuse,” Association of Certified Fraud Examiners, Austin, Texas
• ACFE, 2004, “Report to the nation on occupational fraud and abuse,” Association of Certified Fraud Examiners, Austin, Texas.
• APACS, 2007, “Fraud, the facts 2007,” Association for Payment Clearing Services, London
• CIFAS, 2007, “Fraud trends,” press release 30th January
• Experian, 2006, “Explaining Experian,” Experian, Nottingham
• Juszczak P., N. M. Adams, D. J. Hand, C. Whitrow, and D. J. Weston, 2008, “Off-the-peg or bespoke classifiers for fraud detection?” Computational Statistics and Data Analysis, 52, 4521-4532
• LSLO, 2006, “Fraud review, final report,” The Legal Secretariat to the Law Officers, London
• Mishcon de Reya, 2005, “Protecting corporate Britain from fraud.” Mishcon de Reya, London
• OFT, 2006, “Research into the impact of mass marketed scams,” Office of Fair Trading
• Owen, R., 2007, “Italy fights back against food pirates,” The Times of London, June 29, p44
• The Times of London, 2006, “Cost of fraud spirals to £40bn,” London, 9th September
• Weston D. J., D. J. Hand, N. M. Adams, P. Juszczak, and C. Whitrow, 2008, “Plastic card fraud detection using peer group analysis,” Advances in Data Analysis and Classification, 21, 45-62
• Whitrow C., D. J. Hand, P. Juszczak, D. J. Weston, and N. M. Adams, 2008, “Transaction aggregation as a strategy for credit card fraud detection,” Data Mining and Knowledge Discovery, Forthcoming
Enhanced credit default models for heterogeneous SME segments

Abstract

Considering the attention placed on SMEs in the new Basel Capital Accord, we propose a set of Bayesian and classical longitudinal models to predict SME default probability, taking unobservable firm and business sector heterogeneities as well as analysts’ recommendations into account. We compare this set of models in terms of forecasting performances, both in-sample and out-of-sample. Furthermore, we propose a novel financial loss function to measure the costs of an incorrect classification, including both the missed profits and the losses given defaults sustained by the bank. As for the in-sample results, we found evidence that our proposed longitudinal models outperformed a simple pooled logit model. Besides, Bayesian models performed even better than classical models. As for the out-of-sample performances, the models were much closer, both in terms of key performance indicators and financial loss functions, and the pooled logit model could not be outperformed.

1 Although the paper results from the close collaboration between all authors, it has been written in equal parts by D. Fantazzini and S. Figini. The authors acknowledge financial support from the MIUR-FIRB 2006-2009 project and the EU-IP MUSING 2006-2010 project, contract number 027097.
According to Basel II capital accord, financial institutions require transparent benchmarks of creditworthiness to structure their risk control systems, facilitate risk transfer through structured transactions, and comply with impending regulatory changes. Traditionally, producing accurate credit risk measures has been relatively straightforward for large companies and retail loans, resulting in high levels of transparency and liquidity in the risk transfer market for these asset classes. The task has been much harder for exposures to private small and medium size enterprises (SMEs). Banks have recently been addressing this information deficit by forming shared data consortia. Largely motivated by the incoming Basel II capital adequacy framework, these consortia are used to pool financial data and default experience. When combined with data from regional credit bureaus, the information can be used to develop statistical models that provide consistent, forward-looking probability of default (PD) estimates for small and middle market private firms.

Concerning the causes of default, it is possible to identify a number of components that can generate such a behavior: a static component, determined by the characteristics of the SME, a dynamic component that encloses trend and the contacts of the SME with the bank over different years, a seasonal part, tied to the period of investment, and external factors, that include the course of the markets. To take into account these aspects, we consider many different methods to obtain a predictive tool to model the default.

Panel models to predict credit default for SMEs have been considered in the empirical literature only recently. Dietsh and Petey (2007) use a panel probit model to estimate asset correlations for French SMEs taking sector, location, or size specific factors into account (but no forecasting is performed). Similarly, Fidrmuc et al. (2007) use a panel probit model to study the loan market for SMEs in Slovakia. This leads us to propose and compare a wide range of panel data models to predict default probabilities for SMEs, considering both classical random effects and random coefficients models to take unobservable heterogeneities into account. The presence of qualitative idiosyncrasies, such as quality of the management and business sector characteristics, may explain why firm A defaults but firm B services its debt while exhibiting similar financial fundamentals and debt structures. The issue of whether controlling for firm or business sector heterogeneity helps to improve the forecasting power of default models is relevant to financial institutions and rating agencies, all of which are mostly interested in the when consideration can be directly extended to SMEs risk modeling, too. Panel data might be problematic [Oka (2003), p. 33]. The same try homogeneity that are assumed under probit estimation using multiple-year time horizon. However, as the IMF pointed out with regard to sovereign default modeling, “temporal stability and country homogeneity that are assumed under probit estimation using panel data might be problematic” [Oka (2003), p. 33]. The same consideration can be directly extended to SMEs risk modeling, too. Therefore, based on our unbalanced dataset, we present the following notation for longitudinal models: for observation i, (i = 1, ..., n), time t, (t = 1, ..., T) and sector j, j = 1, ..., J, let Yij denote the response solvency variable, while Xij a p × 1 vector of candidate predictors.

By using a panel dataset of German SMEs, we compare the previous set of classical and Bayesian models in terms of forecasting performances, both in-sample and out-of-sample. The empirical analysis is based on annual 1996-2004 data from Creditreform, which is the major rating agency for SMEs in Germany, for 1003 firms belonging to 352 different business sectors. To assess the performance of the different models, we consider a threshold-independent performance criteria such as the Area-Under-the-ROC Curve (AUC), as well as a nonparametric statistic to compare AUCs arising from two or more competing models. However, the main weakness of the previous criteria is that it does not take the financial costs of a wrong decision into account. Particularly, the overall costs of misjudging a risky loan as well as dismissing a good lending opportunity can be high. In this paper, we are specifically concerned with binary classification models, where one of four outcomes is possible: a true positive (a good credit risk is classified as good), a false positive (a bad credit risk is classified as good), a true negative (a bad credit risk is classified as bad) and a false negative (a good credit risk is classified as bad). In principle, each of these outcomes would have some associated loss or reward. To measure the costs of an incorrect classification, we propose a novel financial loss function that considers the missed profits as well as the loss given default sustained by the bank (or loan issuer in general). Therefore, we choose the best predictive models taking into account both the predictive classification matrix and the lower financial loss function.

As for the in-sample results, we find that Bayesian models perform much better than classical models, thus highlighting the importance of prior qualitative information besides financial quantitative reporting. Similarly, Bayesian models clearly showed much lower loss functions compared to classical models. With regard to the out-of-sample performances, the models are instead closer, both in terms of key performance indicators and of financial loss functions. Hence, our findings corroborate in this novel context the well-known limited relationship between in-sample fit and out-of-sample forecasts.

Longitudinal models for credit rating
Most rating agencies, including our data provider, usually analyze each company on site and evaluate the default risk on the basis of different financial criteria considered in a single year or over a multiple-year time horizon. However, as the IMF pointed out with regard to sovereign default modeling, “temporal stability and country homogeneity that are assumed under probit estimation using panel data might be problematic” [Oka (2003), p. 33]. The same consideration can be directly extended to SMEs risk modeling, too. Therefore, based on our unbalanced dataset, we present the following notation for longitudinal models: for observation i, (i = 1, ..., n), time t, (t = 1, ..., T) and sector j, j = 1, ..., J, let Yij denote the response solvency variable, while Xij a p × 1 vector of candidate predictors.

We are interested in predicting the expectation of the response as a function of the covariates. The expectation of a simple binary response is just the probability that the response is 1: E(Yij | Xij, Zij, ψj) = P(Yij = 1 | Xij).
In linear regression, this expectation is modeled as a linear function \(\beta'X_{itj} \) of the covariates. For binary responses, as in our case, this approach may be problematic because the probability must lie between 0 and 1, whereas regression lines increase (or decrease) indefinitely as the covariate increases (or decreases). Instead, a non-linear function is specified in one of two ways: \(\pi(Y_{itj} = 1 | X_{itj}) = h(\beta'X_{itj}) \) or \(\log(\pi(Y_{itj} = 1 | X_{itj})) = \beta'X_{itj} = \nu_i \), where \(\nu_i \) is referred to as the linear predictor. These two formulations are equivalent if the function \(h(.) \) is the inverse of the link function \(g(.) \).

We have introduced two components of a generalized linear model: the linear predictor and the link function. The third component is the distribution of the response given the covariates. For binary responses, this is always specified as Bernoulli (\(\pi \)). Typical choices of link function \(g(.) \) are the logit or probit links. The logit link is appealing because it produces a linear model for the log of the odds, \(\log(\pi(Y_{itj} = 1 | x_i)) \), implying a multiplicative model for the odds themselves. We remark that we use here the classical notation of generalized linear models, see Rabe-Hesketh and Skrondal (2004, 2005), and references therein.

To relax the assumption of conditional independence among the firms given the covariates, we can include a subject-specific random intercept \(\nu_i \sim N(0, \psi^2) \) in the linear predictor: \(g(\pi(Y_{itj} = 1 | X_{itj}, \nu_i)) = \beta'X_{itj} + \nu_i \). This is a simple example of a generalized linear mixed model because it is a generalized linear model with both fixed effects \(X_{itj} \) and a random effect \(\nu_i \), which represents the deviation from the mean intercept \(\bar{\nu} \) in the log-odds. In particular we propose the following models (with probit and logit links):

\[
\begin{align*}
&g(\pi(Y_{itj} = 1 | X_{itj})) = \beta'X_{itj} + \nu_i \\
&\nu_i \sim N(0, \psi^2) \\
&g(\pi(Y_{itj} = 1 | X_{itj})) = \beta'X_{itj} + \mu_i \\
&\mu_i \sim N(0, \mu^2) \\
&g(\pi(Y_{itj} = 1 | X_{itj})) = \beta'X_{itj} + \mu_i + \epsilon_i \\
&\epsilon_i \sim N(0, \epsilon^2) \\
&g(\pi(Y_{itj} = 1 | X_{itj})) = \beta'X_{itj} + \mu_i + \epsilon_i + \delta_{ij} \\
&\delta_{ij} \sim N(0, \delta^2)
\end{align*}
\]

for firm \(i = 1, \ldots, n \), and for business sector \(j = 1, \ldots, J \). To have a more flexible model, we further extend our models by including a random coefficient. In the specific application we want to test whether the effect of a particular financial ratio varies randomly between business sectors. This can be achieved by including a random slope \(\Sigma_{ij} \), which represents the deviation of business sector \(j \)'s slope from the mean slope \(\beta^2j \). The model can be specified as follows:

\[
\begin{align*}
&g(\pi(Y_{itj} = 1 | X_{itj})) = \beta'X_{itj} + \epsilon_i + \delta_{ij} + \xi_{itj}X_{2itj} \\
&\xi_{itj} \sim N(0, \xi^2_{itj}) \\
&\delta_{ij} \sim N(0, \delta^2_{ij}) \\
&\epsilon_i \sim N(0, \epsilon^2)
\end{align*}
\]

We chose the covariates \(X_{2itj} \) following the advice of Credireform, based on their past experience. Besides, we tried other random coefficients models but without any significant results.

If we plot the difference between random intercept and random coefficient models, Figure 10 shows a single covariate \(x_{ij} \) and a single intercept, and considering the log-odds (Rabe-Hesketh and Skrondal 2004, 2005)), we find that the joint probability of all observed responses for these models, given the observed covariates, does not have a closed form and must be evaluated by approximate methods, such as the Gauss-Hermite quadrature. However, the ordinary quadrature can perform poorly if the function being integrated, called the integrand, has a sharp peak, as discussed in Rabe-Hesketh et al. (2002, 2005). This can occur when the clusters are very large, like in our dataset. In this case, an alternative method known as adaptive quadrature can deliver an improved approximation, since the quadrature locations and weights are rescaled and translated to fall under the peak of the integrand. Besides, they also depend on the parameters of the model. Details of the algorithm are given in Rabe-Hesketh et al. (2002, 2005) and Rabe-Hesketh and Skrondal (2004, 2005). Rabe-Hesketh et al. (2002) wrote a routine named GLLAMM for STATA, which is freely available at www.gllamm.org and was used by the authors to compute the longitudinal models previously discussed.

Finally, we point out that ‘fixed effects panel logit models’ were not considered since they would have implied working with defaulted SME only (that is the only binary data with sequences different from 0,0,0 (Cameron and Trivedi (2005)) causing 85% of data to be lost, thus causing an efficiency loss.

Bayesian parametric longitudinal models for credit rating

Our methodological proposal aims to merge different types of information. To reach such an objective, we propose a particular set of Bayesian longitudinal scoring models for SMEs using Markov Chain Monte Carlo sampling. Our choice is justified to mix the ‘experimentation’ that comes from the balance sheet data (likelihood) and the ‘old knowledge’ that is a measure of a priori knowledge (prior). Typically the a priori knowledge is represented by unstructured data (qualitative information), such as analyst comments, textual information, and so on. The qualitative information at our disposal consists of an analyst description of the examined SMEs, which ends in a quite generic outlook for the future, without any clear indication of whether to authorize the loan or not. Private communications with the data provider pointed out that such a generic recommendation is justified by the fact the analyst is not the one in charge of the final decision. That decision is usually made by the financial director.

Unfortunately, this prior information is missing for many SMEs. Furthermore, we observe that it does not follow a clear pattern with...
respect to the balance sheet, since a SME with positive profits and cash flows can have a (generic) negative outlook and vice versa. Given this qualitative information, we decided to choose uninformative priors for the fixed effects parameters, and a U(0, 100) for the random effects parameters to reflect the great variability in the analysts recommendations. However, more research and a larger qualitative dataset are needed to get more reliable a priori information and a more realistic prior distribution.

Therefore, we propose a new methodology based on Bayesian longitudinal scoring models for SMEs, with the following structure:

\[
g(p(Y_{itj} = 1|X_{itj})) = \beta' X_{itj} + \varsigma_j
\]

\[
\varsigma_j \sim N(0, \sigma^2_\varsigma)
\]

\[
\beta_0 \sim MN(0,0,\Sigma_0) \quad \beta_1 \sim MN(0,0,\Sigma_1) \quad \beta_2 \sim MN(0,0,\Sigma_2)
\]

\[
\alpha_{2,2} \sim \text{U}(0, 100)
\]

where we followed the standard framework for Bayesian random effects models proposed in Gelman et al. (1995) and Gamerman (1997a, b), and implemented in the software Winbugs, which is freely available at the address http://www.mrc-bsu.cam.ac.uk/bugs/ (i.e., the MRC Biostatistics Unit, University of Cambridge, U.K.). However, other approaches are possible, and we refer to Cai and Dunson (2006) and references therein for more details. We obtain model inference with Markov Chain Monte Carlo sampling. In particular, we use a special formalization of Gibbs Sampling [Gamerman (1997a, b) and the Winbugs manuals].

We consider a similar Bayesian approach for random coefficients models: \(g(p(Y_{itj} = 1|X_{itj})) = \beta' X_{itj} + \varsigma_1 + \varsigma_2 + \varsigma_{2,ij} \) where \(X_{2,ij} \) is a financial ratio and

\[
\varsigma_1 \sim N(0, \sigma^2_\varsigma)
\]

\[
\varsigma_2 \sim N(0, \sigma^2_\varsigma)
\]

\[
\alpha_{2,2} \sim \text{U}(0, 100)
\]

A real application

The empirical analysis is based on annual 1996-2004 data from Creditreform, which is the major rating agency for SMEs in Germany, for 1003 firms belonging to 352 different business sectors. Founded in 1984, Creditreform deals with balance sheet services, credit risk, and portfolio analyses as well as consultation and support for the development of internal rating systems.

Recently, Freericks and Wahrenburg (2003) and Plattner (2002) used a logit model to predict the default risk of German companies. The use of a discriminant model to measure credit risk has not been considered here because of several problems that can occur when using this method [Eisenbeis (1977)]. Besides, Creditreform itself uses logit models only, since they have proved to be a better choice.

Dataset

When handling bankruptcy data it is natural to label one of the categories as success (healthy) or failure (default) and to assign them the values 0 and 1 respectively. Our dataset consists of a binary response variable \(Y_{itj}\) and a set of explanatory variables: \(X_{1,ij}, X_{2,ij}, \ldots, X_{p,ij}\). Given by financial ratios and time dummies. In particular, our dataset consists of two tables: companies-negative-insolvency and companies-positive-solvency. We have 708 data samples for 236 companies with negative-insolvency and 2694 data samples for 898 companies with positive-solvency. While the number of defaulted observations may seem large compared to similar studies, we remark that the share of non-performing loans in German savings banks' and credit cooperatives' non-bank lending rose steadily from 6.1% in 2000 to 7.4% in 2004 [see the Financial Stability Review (2003-2007) by the Deutsche Bundesbank for more details].

Given this understanding of our balance sheet data and how it is constructed, we can discuss some techniques used to analyze the information there contained. The main way this is done is through financial ratio analysis. Financial ratio analysis uses formulas to gain insight into the company and its operations. For the balance sheet, financial ratios (like the debt-to-equity ratio) can provide you with a better idea of the company’s financial condition along with its operational efficiency. It is important to note that some ratios will require information from more than one financial statement, such as from the balance sheet and the income statement.

There is a wide range of individual financial ratios that Creditreform uses to learn more about a company. Given our available dataset, we computed this set of \(11\) financial ratios suggested by Creditreform based on its experience:

- **Supplier target** – is a temporal measure of financial sustainability expressed in days that considers all short and medium term debts as well as other payables.
- **Outside capital structure** – evaluates the capability of the firm to receive other forms of financing beyond banks’ loans.
- **Cash ratio** – indicates the cash a company can generate in relation to its size.
- **Capital tied up** – evaluates the turnover of short term debts with respect to sales.
- **Equity ratio** – is a measure of a company’s financial leverage calculated by dividing a particular measure of equity with the firm’s total assets.

2 The business sectors were expressed in numeric codes only and could not be aggregated. We asked for them, but they could not be disclosed for privacy reasons since they were together with the firm name and other private information.

3 Due to confidentiality reasons to protect Creditreform’s core business, we cannot disclose the exact definition of the financial ratios used, while we are entitled to give a general description.
Enhanced credit default models for heterogeneous SME segments

- **Cash flow to effective debt** — indicates the cash a company can generate in relation to its size and debts.
- **Cost income ratio** — is an efficiency measure, similar to the operating margin, that is useful for measuring how costs are changing compared to income.
- **Trade payable ratio** — reveals how often the firm payables turn over during the year; a high ratio means a relatively short time between purchase of goods and services and payment for them, otherwise a low ratio may be a sign that the company has chronic cash shortages.
- **Liabilities ratio** — a measure of a company’s financial leverage calculated by dividing a gross measure of long-term debt by firm’s assets. It indicates what proportion of debt the company is using to finance its assets.
- **Result ratio** — is an indicator of how profitable a company is relative to its total assets; it gives an idea as to how efficient management is at using its assets to generate earnings.
- **Liquidity ratio** — this ratio measures the extent to which a firm can quickly liquidate assets and cover short-term liabilities, and therefore is of interest to short-term creditors.

In addition, we considered these additional annual account positions, which were standardized in order to avoid computational problems with the previous ratios:

- **Total assets** — is the sum of current and long-term assets owned by the firm.
- **Total equity** — refers to total assets minus total liabilities, and it is also referred to as equity or net worth or book value.
- **Total liabilities** — includes all the current liabilities, long term debt, and any other miscellaneous liabilities the company may have.
- **Sales** — 1-year total sales
- **Net income** — is equal to the income that a firm has after subtracting costs and expenses from the total revenue.

We also considered time dummies since they proxy a common time varying factor and usually reflect business cycle conditions in an applied micro study, however, these models performed quite similarly to the ones without time dummies. We do not report their results but they are available from the authors upon request.

Data provided by the Deutsche Bundesbank in its Financial Stability Review (2004) for the the main financial indicators of the private sector in Germany to explain the credit cycle in the analyzed period suggest that while default risks diminished at large enterprises both in Germany and abroad at the end of 2004, this contrasts with the still high level of business insolvencies among SMEs and a rising consumer insolvency trend in Germany. This growing number of business insolvencies in Germany is closely related to the problem of adequate financing and in particular to the fact that many firms have a poor level of own resources. Because of their increasingly scanty level of own resources, German SMEs have become more and more dependent on credit. When it comes to obtaining finance, the decisive factor for any SME is its relationship with its ‘house bank.’ In particular, the relationship of less information-transparent SMEs with their banks is characterized by very close bank-customer ties (relationship lending). However, increasing competitive pressure has made such relationships more difficult, as, for customers, it facilitates the switch to another bank. Therefore, this means that investment in input-intensive information procurement becomes less interesting for a potential house bank. Besides, alternative forms of capitalization, such as equity financing by going public, seem to represent an attractive option only for larger companies, since they involve high costs [Creditreform (2004), Deutsche Bundesbank (2004)].

Inferential analysis

All models considered in our empirical analysis are reported in Figure 1.

Due to space limits, the estimation results are reported in Tables 10-24, Appendix A of the working paper by Fantazzini et al. (2008). These tables highlight that the signs and the magnitudes of the estimated coefficients are very similar across all the models. This fact confirms the robustness of our proposals. We note that only three financial ratios are statistically significant: the equity ratio, the liabilities ratio, and the result ratio. This evidence confirms business practice and empirical literature using similar ratios [Altman and Sabato (2006)].

Concerning the signs of the three ratios, we observe that while the ones for the equity and results ratios are reasonably negative (i.e., the higher the equity the less probable the default), the negative sign for the liabilities ratio seems counterintuitive. Nevertheless, our business data provider has explained to us that the majority of debts in our datasets were covered by external funds provided by

<table>
<thead>
<tr>
<th>n.</th>
<th>Longitudinal model</th>
<th>Link Random</th>
<th>Random Intercept</th>
<th>Random slope</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Classical</td>
<td>Probit</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>Classical</td>
<td>Logit</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>Classical</td>
<td>Probit</td>
<td>yes (firm)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>Classical</td>
<td>Probit</td>
<td>yes (sector)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>Classical</td>
<td>Probit</td>
<td>yes (firm, sector)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>6</td>
<td>Classical</td>
<td>Logit</td>
<td>yes (firm)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>Classical</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>8</td>
<td>Classical</td>
<td>Logit</td>
<td>yes (firm, sector)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>Classical</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>yes (equity ratio)</td>
<td>no</td>
</tr>
<tr>
<td>10</td>
<td>Classical</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>yes (liabilities ratio)</td>
<td>no</td>
</tr>
<tr>
<td>11</td>
<td>Classical</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>yes (result ratio)</td>
<td>no</td>
</tr>
<tr>
<td>12</td>
<td>Bayesian</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>yes (equity ratio)</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>Bayesian</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>yes (liabilities ratio)</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>Bayesian</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>yes (result ratio)</td>
<td>yes</td>
</tr>
<tr>
<td>15</td>
<td>Bayesian</td>
<td>Logit</td>
<td>yes (sector)</td>
<td>yes (result ratio)</td>
<td>yes</td>
</tr>
</tbody>
</table>

Figure 1 - List of the models

4 The equity and liabilities ratios that we used were not the standard specular measures, which would have implied perfect multi-collinearity. Instead, the computation of the first ratio involved 5 variables, whereas the second 3 variables. Due to confidentiality reasons to protect Creditreform core business, we cannot disclose the exact definition of the two ratios, as previously discussed. Besides, the coefficient of the liability ratio remains negative and significant also when the equity ratio is not included.
the owners of the firms. This is usually done for tax savings purposes. Therefore, a high liabilities ratio can signal a very wealthy firm. The equity and liabilities ratios that we used were not the standard specular measures, which would have implied perfect multicollinearity. Instead, the computation of the first ratio involved 5 variables, whereas the second 3 variables. Due to confidentiality reasons to protect Creditreform’s core business, we cannot disclose the exact definition of the two ratios, as previously discussed.

We remark that ‘window dressing’ the balance sheet or committing financial fraud (in the worst case) are dramatic problems for SMEs, and not only for SMEs. A document issued by the European Federation of Accountants (FEE) in 2005 clearly highlights these problems, including a case study of a medium-sized German enterprise. Further evidence is reported in Ketz (2003), too. Frommann (2006) described the situation of medium-sized businesses in Germany, depicting the weaknesses and problems of the ‘backbone of German economy,’ especially their financing situation and the increasing number of insolvencies. Interestingly, he pointed out that ‘...the number of insolvencies in Germany doubled within the last ten years. Insolvencies steadily increase since 1999. The most important increment was stated in 2002, when the total number of insolvent enterprises increased by 70%. Since 1999 private persons in Germany are entitled to write off their debts. Any private person may use this so-called consumer insolvency proceedings. After having paid any income exceeding the exemption limit for garnishments to a trustee during six years, the remaining debts will be waived and the debtor may do a ‘fresh start’. Many private persons have been using this right: 60,100 persons declared their insolvency in 2003 with an increasing trend,’ Frommann (2006, p.21). These comments help to explain our empirical evidence. As for the random effects, we see that the most important one is the business sector, while the firm-specific one is not significant, once the business sector is taken into account. However, we believe that the high number of business sectors (and the impossibility to aggregate them) may explain why the firm-specific random effect is not significant. Instead, all the three random coefficient models show significant random variances, thus highlighting a strong degree of heterogeneity in financial ratios as well. To complete our analysis, we tried to estimate a model with the owners of the firms. This is usually done for tax savings purposes. Therefore, a high liabilities ratio can signal a very wealthy firm.4

A review of model comparison see Giudici (2003). The intensive widespread use of computational methods has led to the development of intensive model selection criteria. These criteria are usually based on using a dataset different from the one being analyzed (external validation) and are applicable to all the models considered, even when they belong to different classes (for example in the comparison between different types of predictive models). In particular, we focus on the results coming from the predictive classification table known as confusion matrix (Kohavi and Provost (1999a, b)). Typically, the confusion matrix has the advantage of being easy to understand, but, on the other hand, it still needs formal improvements and mathematical refinements.

A confusion matrix contains information about actual and predicted classifications obtained through a classification system. The performance of a model is commonly evaluated using the data in the matrix. Figure 2 shows the confusion matrix for a two class classifier.

Given the context of our study, the entries in the confusion matrix have the following meaning: a is the number of correct predictions that a SME is insolvent, b is the number of incorrect predictions that a SME is insolvent, c is the number of incorrect predictions that a SME is solvent, and d is the number of correct predictions that a SME is solvent. An important instrument to validate the performance of a predictive model for probabilities is the ROC curve by Metz and Kronman (1980), Goin (1982), and Hanley and McNeil (1982). Given an observed table and a cut-off point, the ROC curve is calculated on the basis of the resulting joint frequencies of predicted and observed events (successes) and non-events (failures). More precisely, it is based on the following conditional probabilities:

- Sensitivity: $\frac{a}{a + b}$ proportion of events
- Specificity: $\frac{d}{d + c}$ proportion of non events
- False positives: $\frac{c}{c + d}$, or equivalently, $1 -$ specificity, proportion of non-events predicted as events (type I error)
- False negatives: $\frac{b}{a + b}$, or equivalently, $1 -$ sensitivity, proportions of events predicted as non events (type II error)

The ROC curve is obtained representing, for any fixed cut-off value, a point in the Cartesian plane having as x-value the false positive value (1-specificity), and as y-value the sensitivity value. Each point in the curve corresponds therefore to a particular cut-off. Consequently, the ROC curve can also be used to select a cut-off point, trading-off sensitivity and specificity. In terms of model comparison, the best curve is the one that is leftmost, the ideal one coinciding with the y-axis.

However, while the ROC curve is independent of class distribution or error costs (Kohavi and Provost (1999a, b)), it is nevertheless threshold dependent, that is, it depends on a probability cut-
off value to separate defaulted firms from those that have not defaulted. Recent literature proposed the calculation of the ‘area under the ROC-curve (AUC)’ as a threshold-independent measure of predictive performance with bootstrapped confidence intervals calculated with the percentile method (Buckland et al. 1997)). It has been shown that the area under an empirical ROC curve, when calculated by the trapezoidal rule, is equal to the Mann-Whitney U-statistic for comparing distributions of values from the two samples (Bamber 1975, Hanley and McNeil 1982) use some properties of this nonparametric statistic to compare areas under ROC curves arising from two measures applied to the same individuals. A similar approach is proposed by DeLong et al. (1988).

Moreover, as noted by the Basle Committee on Banking Supervision (1998), the magnitude, as well as the number, of correct predictions is a matter of regulatory concern. This concern can be readily incorporated into a so-called loss function by introducing a magnitude term. Consequently, in our model we would like to choose the best predictive models taking into account both the confusion matrix and a financial loss function. In particular, following the framework proposed in Granger and Pesaran (2000), the pay-off matrix summarizing the decision-making problem at hand is provided in Figure 3.

Where θ_{it} = the interest expenses and represents the opportunity cost of when the bank does not concede the loan but the firm does not default. Instead, θ_{it} = liabilities to banks x (1-recovery rate) and represents the loss when the loan is conceded but the firm actually defaults. The cost of a correct forecast is zero. This gives the following expression for our financial loss function: Loss = Σ_i Σ_t θ_{it} I(p̂_{it} > cutoff) + θ_{it} I(1-p̂_{it} > cutoff), that is a particular weighted sum of the four elements of the confusion matrix. As for the recovery rate, a fixed loss given default (LGD) of 45% is assumed, using the one suggested in the Foundation IRB approach for senior unsecured loan exposures. We notice that all the SMEs analyzed in our study had liabilities to banks. This is the usual case for SMEs in continental Europe (particularly in Germany and Italy), which are different from those based in the U.K. and the U.S. See the Financial Stability Review (2003-2007) issued by the Deutsche Bundesbank, Frommann (2006) or the survey of Insolvencies in Europe (2003-2007) by the Creditreform Economic Research Unit, for more details about the key role banks have in the financing of German small- and medium-sized firms.

Empirical results

Due to space limits, we do not report the tables for the in-sample results, while we refer the interested reader to tables 4-6 in the working paper by Fantazzini et al. (2008) for the full set of results. We can observe that the best models in term of in-sample fit are the Bayesian models, whose AUC and Gini index are well above 90%. Similar evidence is given by the minimized loss functions. The joint test for equality of the AUCs strongly rejects the null that the fifteen models deliver the same in-sample forecasting performance. To sum up, the previous results clearly favor the models with firms’ and business sectors' heterogeneity, where the latter is preferred.
and that allows for prior qualitative information. They provide strong evidence against models assuming full homogeneity, like the simple pooled logit and probit models.

To better assess the predictive performance for each model, we also implemented an out-of-sample procedure. We used as the training set the observations ranging between 1996 and 2003, while we use the year 2004 as the validation set. We report the AUC and Gini index as well as the minimized loss functions for each model in Table 4. The joint test for the equality of the AUCs is reported in Tables 5. The performance criteria highlight that there is not a clear model that outperforms the others, since they all show a similar AUC index around 80%, apart from Bayesian models, for which the forecasting performances are slightly lower. Furthermore, the joint test for equality of the AUCs do not reject at the 1% level the null that the fifteen models deliver the same out-of-sample forecasting performance. Similarly, when considering the minimized loss functions, there is no major difference among the models, which is different from what happened for the in-sample analysis.

The previous analysis pointed out that the more complex formulotions, there is no major difference among the models, which is different from what happened for the in-sample analysis. However, when forecasting, the models perform differently in terms of key performance indicators and in terms of financial losses. The pooled logit model could also not be outperformed when classification between defaulted and not defaulted issuers is considered. Recent developments in the context of credit risk modeling for German SMEs have been considered in the empirical literature only recently. Another contribution of this paper is the proposal of a financial loss function able to consider the opportunity cost when the bank does not concede the loan but the firm does not default, and the loss when the loan is conceded but the firm actually defaults.

We compared the models in terms of forecasting performances, both in-sample and out-of-sample. As for the in-sample results, we found evidence that our proposed longitudinal models performed rather well, with AUC ranging between 80% and 90%. Bayesian models performed even better than classical models with an AUC index of 10% or more. Similarly, the former models clearly showed much lower loss functions compared to the latter models. As for the out-of-sample performances, the models were much closer, both in terms of key performance indicators and in terms of financial loss functions. The pooled logit model could also not be outperformed. Our empirical analysis documents a very weak association between in-sample fit and out-of-sample forecast performance in the context of credit risk modeling for German SMEs. Therefore, our finding is consistent with the accepted wisdom that heterogeneity estimators are worse at forecasting than simple pooling approaches [Baltagi (2005)]. Our findings are consistent with this accepted wisdom and give some further insights to explain this point.

The natural question that follows is why a simple model like the logit can perform similarly or even better than more complex models when classification between defaulted and not defaulted issuers is of concern. Recently, Hand (2006) and Fantazzini and Figini (2008) showed that certain methods that are inappropriate for function estimation because of their very high estimation bias, like the pooled logit, may nonetheless perform well for classification when their (highly biased) estimates are used in the context of a classification rule. All that is required is a predominately negative boundary bias and a small enough variance [Fantazzini and Figini (2008)].
References

- Bai, T. L., 2005, Econometric analysis of panel data, Wiley
- Bamber, D., 1975, “The area above the ordinal dominance graph and the area below the receiver operating characteristic graph,” Journal of Mathematical Psychology, 12, 387-419
- Basel Committee on Banking Supervision, 1998-2000a, “Amendment to the Capital Accord to incorporate market risks,” Basel
- Deutsche Bundesbank, 2003, “Approaches to the validation of internal rating systems,” Monthly report, September
- Deutsche Bundesbank, 2003-2007, Financial stability review
- Federation des Experts Comptables Européens, 2005,. How SMEs can reduce the risk of fraud,” November, FEE Technical Resources
The impact of demographics on economic policy: a huge risk often ignored

Abstract
This paper examines the influence of demographics on the economic demands of a population in a democracy. We argue in this paper that one country’s demographic profile will drive its economic policies in a manner that may seem at odds with the rational behavior of another country, unless one realizes the implications of demographic imbalances among countries. This paper highlights the conflicts that have arisen and will arise among countries as policies differ. In particular we are concerned with understanding how long term trends in decision-making can create market risks and opportunities based on different demographic forces. Awareness of demographic trends will often lead to a more effective understanding of a nation’s economic policy and its impact on the world’s economy.

1 Earlier work on this topic was contributed by Bluford H. Putnam in collaboration with D. Sykes Wilford. The authors also wish to thank Dr. Putnam for his input on the concepts considered herein and Professor Helen G. Daugherty for her early research into the relative demographic questions posed.
In 1972, the world economic order as we had known it since the end of the Second World War came to an abrupt end. In that year, the U.S. dollar, anchor for the developed world’s currencies, no longer served as the official reserve currency through a fixed dollar price of gold. In effect, this ended the economic dictatorship of the U.S., just as the Great Depression had ended the economic dictatorship of the British. Today, because no single country controls global fiscal and monetary policy, each country can act in its own interest to satisfy the needs of its people. Given that flexibility, we can ask what determines a nation’s economic policy. We feel that overlooking the implications of political economics in the context of a political democracy can lead to large misjudgments about market risk.

In this paper we will outline how economic policy decisions can be driven by a country’s demographics and how a flexible exchange rate system has allowed citizens of the major economic powers greater freedom to exercise political influence via the ballot box to achieve their economic interests. Policy responses by governments to various crises since the early seventies often reflect these demographic differences. What a country or block of countries may do when faced with a problem, whether it is unemployment, inflation, or maintaining a strong currency, is often simply driven by the policies best suited to that country’s dominant demographic group.

We highlight differing demographics among countries and discuss how those demographics influence a nation’s economic policies and the implied effects on markets. In particular, we are concerned with understanding how long term trends in decision-making can create market risks and opportunities based on different demographic forces. In order to provide contrast with the current period of economic democracy, this paper will first highlight past economic regimes and subsequently describe the current system and the demographic realities of the nations that form the parts of that system. Finally, we will focus on policy decisions that we can expect in response to crises that may arise.

The old order – financial dictatorship and stability

First, consider the period of the Gold Standard when the United Kingdom effectively administered the world’s financial system. From 1649 until 1903 there was no lasting inflation. In fact, the price level itself remained very stable. Whenever prices rose temporarily due to shocks, as they did in the Napoleonic Wars, prices would return to their pre-shock levels immediately afterwards (Figure I).

So, in effect, economic agents’ expectations had always been that global prices would be relatively stable. Nations could experience the ups and downs of debasement and “rebasement” of their currencies, but, for all practical purposes, international trade could evolve with a stable set of prices and a stable relationship between sterling and gold. Real relative price movements could and would occur, of course, but wealth transferring inflation was not the norm for the international system. When this system broke down after World War I, inflation broke out in some counties while deflation and depression became the norm in others. The international trading system was under attack and the stage was set for economic chaos, which, many felt, ushered in, or at least supported, the demand for fascist type solutions and thus set the stage for World War II.

Toward the end of World War II delegates from the allied nations met at Bretton Woods, New Hampshire to negotiate how the new international monetary system would be determined. The desire was to have the stability of the Gold Standard, but with some recognition of the changes in the world’s trading system that were likely to emerge. The result was a standard in which the U.S. dollar became the center of the world’s financial system, with the dollar anchored to gold. Nations linked their currencies to the dollar, and the price of gold was fixed in dollar terms. Much of the world’s gold was held in Fort Knox as ‘collateral’ against the dollar. With the Bretton Woods system firmly in place, the world again witnessed impressive and extensive growth through trade and the rebuilding of Europe and Japan, all under the watchful eye of the monetary authorities of the U.S. (which were supposedly held in check by the dollar value of gold).

During both the Gold Standard and the Bretton Woods system, the world’s monetary system was relatively stable. Inflation was not a serious issue. Expectation of stability in prices, reasonable movement in relative prices, and monetary sobriety were the norm. Both of these systems, however, were defined by the monetary policy of the world’s dominant trading and military powers, the U.K. and the U.S. Monetary policy was set by the policies of the Bank of England and then later by the U.S. Federal Reserve. Any nation’s central bank that chose to go it alone would suffer the wrath of the system and be forced to devalue (or revalue) its currency. The key to the success of the world’s economic order was the dictatorial nature of monetary policy. It was not one defined by political democracy. For example, if Mexico or France chose to defy the system and pursue a policy inde-

3 Much has been written about the causes of World War II, however many economists believe that John Maynard Keynes’ insights in his book The economic consequences of the peace, were helpful in explaining the frustrations felt by most Germans and the ensuing hyperinflation.

The impact of demographics on economic policy: a huge risk often ignored

dependent of that of the U.K. (gold) or the U.S. (Bretton Woods), then that country would pay the price by an adjustment of its currency to get it back in line with what was dictated by the dominant authority. After Bretton Woods, money supply creation in the U.S. led economic responses [Sims (1972)]⁵, and other countries had to accept this [Williams et al. (1976)]⁶. The monetary approach to the balance of payments explained these two phenomena [Putnam and Wilford (1978)]⁷. That is, the U.S. drove not only U.S. money balances and the implications for nominal GNP but also that of the rest of the world.

The current order – economic democracy

In 1971, the Bretton Woods System began to come apart⁸. With the Vietnam War, the Great Society, and fiscal profligacy, the U.S., as ‘dictator’ of economic policy, began to export its own inflation via the Bretton Woods System to other nations around the world. This was, of course, unwelcomed by most of the U.S.’s trading partners who looked to the system for stability, not instability and inflation. The world went from a period of stability to a period of considerable exchange rate volatility. With the collapse of Bretton Woods there was no single financial dictator. No single country defined the financial system for everyone else. Each government was free to act on its own behalf because of the flexible exchange rate system that followed. If one government wanted to have inflation, it could. If another government wanted to have deflationary policies, it could. Economic democracy ruled among nations⁹.

So why did some countries choose inflationary policies while others opted for stable prices? Why did the policy of one country differ from that of another? Why did the Europeans in the late 1980s argue so vehemently against the twin U.S. fiscal and trade deficits as poor policy? Why would they ask the U.S. to raise taxes and get it back in line with what was dictated by the dominant authority. If one government wanted to have inflation, it could. If another government wanted to have deflationary policies, it could. Economic democracy ruled among nations⁹.

Demographics and the life cycle hypothesis

To see how demographics influence economic and financial policies, it is instructive to examine eight countries: China, Germany, India, Japan, Mexico, Russia, Turkey and the U.S. In Figures A1-A to A1-H in the Appendix, male and female cohorts for each of these countries are presented at five year intervals (0 to 5, 5 to 10, etc.) from their consuming years to their productive years¹⁰. When cohorts are pre-school or in school, for example, approximately 0 – 20 years of age, they are consumers. The cohort is not productive relative to society. They do not produce economic output, but consume through direct consumption and through education acquisition. As people get older, they tend to become more productive. They leave school, get jobs and learn how to do something in their first jobs. By the time they reach their mid-thirties, they usually have learned how to do their jobs well and can bring other people along to make them more effective. In their forties we find that people are highly productive. They earn the most and tend to save the most during this period. Then, between the ages of sixty and sixty-five, they begin to leave the labor force. This ‘life cycle model’ assumes that individuals typically move from consumption, to savings and production, and then to consumption again. The proportion of the population in each stage, however, varies by country¹¹.

We, therefore, consider those people between the ages of 20 and 65 to be producers. In reality, these ages differ for each economy, but they are reasonable cut-off points for comparison purposes. In Figure 2, we have calculated two measures of productive labor relative to consumers. For each of the demographic profiles of the nine countries, we list a producer/consumer (P/C) index and an incoming/outgoing (I/O) index. The I/O index is a ratio of the number of new entrants (15-20 years old) to the number of new retirees (60-65 years old). Figure 2 helps to explain a country’s productivity, savings, and financial policy decisions.

Before 1990, for example, Japan’s real, per capita GDP was expected by many to overtake that of the U.S. by the year 2000. (Today, it is believed that China’s total GDP is going to overtake that of the U.S. by the year 2025). In the 1990s, it seemed that buying the Nikkei and selling the S&P was a sure bet since many newspapers discussed the demise of the American model of capitalism in favor of Japan’s directed economy. Figure A2-D in the Appendix shows Japan’s demographic profile in 2005. Every time one person left the labor force, approximately one person was looking for a job. We see stability. We also see that a majority of the population was either in or entering the productive years, not the consuming years. In 1990, Japan had the perfect balance for being productive, being efficient, and having a competitive advantage in savings and production. Why? Because, from a demographic standpoint, they were at their most productive as a people. There was not a large number of consumers (children and retirees) relative to the big producing group in the middle. Japan’s P/C was 1.60 and its I/O was 1.99. Thus, there were 1.6 people in their productive years for every one in their

Footnotes:

⁸ For explanations of the collapse of Bretton Woods see, for example, Leeson above and Braithwaite, J., and P. Drahos, 2001, Bretton Woods: birth and breakdown, Global Policy Forum, April
⁹ For a description of and explanations for increased volatility of markets see, for example: The recent behaviour of financial market volatility, Bank for International Settlements, Paper 29, Aug. 2006; Exchange market volatility and securities transac-

The impact of demographics on economic policy: a huge risk often ignored

Consuming years. The 1.99 I/O number is artificially high due to two effects: the large losses of young males in WWII (a 20-year old Japanese male in 1945 would have been 65 years old in 1990 — if he had survived the war), and the post-war baby-boomer children that were now entering the labor force. By 2005 the I/O distortions had worked themselves through the system and the I/O and P/C indices both showed relative stability.

In Germany in 1990, a few more people came into the labor force than were leaving, but here, too, the bulk of the population was in its most productive years (see Figure A1-B). Again, about 1.1 or 1.2 people in Germany were coming into the labor force as one was leaving it. Germany’s P/C index of 1.74 was the largest of any of the countries listed in Figure 2.

In their most productive years, people want policies that are stable and careful. They do not want policies that shift wealth to younger or older people. Thus, we can begin to understand the policies of Japan and Germany in the mid 1980s and 1990s when they were at their most efficient relative to their demographics. In the U.S., however, there was a very different picture (see Figure A1-H). There were almost two people (I/O = 1.77) wanting a job for each one leaving the labor force. So, the U.S. had a problem. It had people it needed to employ, and that was before taking immigration into account.

Figure A1-E displays the demographics of Mexico in 1990. The demographic picture of Mexico was typical of much of the developing world, which was often shut out of the global economy due to the debt crisis of the 1980s. There were 8.15 people trying to get one job in Mexico. Clearly, a different set of policies in Mexico was necessary than could be pursued in the U.S., Germany, or Japan.

In 1985, the U.S. had the problem of an expanding labor force. Labor was very expensive, the dollar was relatively strong, and the Federal Reserve changed policies. The Europeans and the Japanese did not. In the U.S. there was a need to put people to work. By the late 1980s the dollar had become a much weaker currency, relative labor costs had declined, and the U.S. was beginning to create jobs. When there is high unemployment and the need to attract capital to put people to work, the cost of labor is lowered. How does government policy lower the cost of labor relative to the cost of capital in the world? Write a policy for a weaker currency. From a risk perspective this was the key to understanding the deviations in policies and the implications for markets.
In the mid 1990s, the U.S. trade deficit was beginning to close. Major disequilibria were showing up in European countries in order to maintain their exports and keep their currencies in line for the coming of the euro. They were now beginning to have something they did not have in the 1980s—high unemployment. Labor markets were in disequilibria in Europe: tight fiscal policy and high unemployment. The ‘Maastricht’ treaty meant that the fiscal policy would remain tight in Europe. Most people did not care because they already had jobs. They were not young and it did not matter since unemployment was focused on young people. When one person left the labor force, another person could come and get a job. Those who voted and continued to vote were unaffected.

By the mid 1990s, Japan had become recession prone: slow, to very slow, to zero, to negative growth. One recession followed another. And Japan had become a deficit country. People think of the U.S. as having twin deficits: trade and fiscal. But the Japanese fiscal deficit was substantially greater as a percentage of its GDP than that of the U.S. In 2007 the relative size of the outstanding government debt, as a percentage of GDP, was over 170% for Japan and less than 66% for the U.S.

Tight monetary policies basically permeate the mentality of European decision makers today. We see this in the reaction of the ECB and the Continental European countries to the recent banking crises. The first reaction was that it was a U.S. and British problem. It was believed fundamentally that inflation was the real concern of the ECB. Banks would be fine; that is until the problem became a global crisis and it had come home to the heart of Germany with图形. Even so, up until the recent economic crisis, the fiscal policy and regulations clearly favor consumption, which is one area in which the U.S. policy is contrary to what we would predict if the focus were on job creation. Consequently, even with the demographics moving in its favor, the trade deficit has skyrocketed. The present U.S. tax policy compared to European and Japanese tax policies seems to be reversing the benefits resulting from demographics. Even so, up until the recent economic crisis, the fiscal deficit in the U.S., in spite of its expansionary government, has been relatively small when compared to that of other countries. The force of demographics is now driving policies which tend to create fiscal gaps. One interesting question for the future is how long can relatively high savings rates support the policies of spending that seem necessary to support the aging populations of Europe and Japan. This is a major risk difference that must be considered.

The important point here is that demographics drive politics. In the mid 1980s, European countries were more productive demographically relative to the U.S. In the 1990s, tight fiscal and monetary policies set the stage for the single currency through the Maastricht Treaty. Europe and Japan did not then, and do not now, have a great number of young people to put to work. Social policies, which were designed to protect older workers, suited the demographic profile of those countries. Older voters everywhere want low inflation and the status quo. Younger voters want to transfer wealth either directly by working or indirectly through support programs. And the government is the vehicle for creating wealth transfers either directly or through its policies, even if not efficiently. Basically, what we are experiencing now is a result of these polices. But there is little pressure for policy to change in Europe and Japan because their populations are still more interested in the status quo.

Europe’s trade surplus has become difficult to maintain as its population ages. Policy issues can dominate for a while, however, especially if they represent the status quo. For example, U.S. tax policy and regulations clearly favor consumption, which is one area in which the U.S. policy is contrary to what we would predict if the focus were on job creation. Consequently, even with the demographics moving in its favor, the trade deficit has skyrocketed. The present U.S. tax policy compared to European and Japanese tax policies seems to be reversing the benefits resulting from demographics. Even so, up until the recent economic crisis, the fiscal deficit in the U.S., in spite of its expansionary government, has been relatively small when compared to that of other countries. The force of demographics is now driving policies which tend to create fiscal gaps. One interesting question for the future is how long can relatively high savings rates support the policies of spending that seem necessary to support the aging populations of Europe and Japan. This is a major risk difference that must be considered.

The changing environment—globalization and the advanced economies

Up to this point, our analysis ignores some of the major changes in the global picture that have developed in the new millennium. The emerging nations are no longer isolated from the world economy. They are becoming part of it with their own demographic issues. China in the 1990s was external to the system, and Russia was still in its Soviet period. India was happy with its anti-capitalistic, predatory government interventions. As for Europe, in the 1990s it did not have a single currency that would benefit from expansion into low-cost Eastern Europe. To better understand this new period it is necessary to look at the demographics two decades from now and the policies they imply.

In 2025, what we see is a very interesting contrast of demographics. It is very clear that in Japan (see Figure A3-B) more people leave the labor force each year than enter it. The I/O ratio is .84 and the P/C ratio is expected to be 1.22. So, again, they will follow a policy of maintaining the status quo: no inflation and conservative policies will rule decisions. There is no reason to create new jobs. There is no reason to pursue a set of policies that dynamically puts the economy back in order. Keep life as it is because there is no pressure from people out on the streets asking for jobs. And we see, increasingly, that ‘Japanese’ products are being produced elsewhere, such as in the U.S, China, Taiwan, and Indonesia. In this way, Japan can take advantage of an expanding and cheap labor market. Hopefully those assets will pay off to support the aging population down the road.

In Germany, the same thing will occur, only worse. Their I/O will be just .65 and their P/C 1.38. Germany will have a bulge at the most productive point in 2025. But what happens when that moves out? They have no replacements. And today, Germany’s relative imbalance and strong currency is supportable due to the cheaper labor of the Eastern part of the Eurocurrency bloc. Consequently, the flip side of
those wonderful demographics of 1990 is that by the year 2025 they look significantly dangerous. More importantly, the policies will be for the status quo and perhaps a continued strong currency. Germany’s situation is representative of Europe. Italy does not look that much different. Spain is only slightly different. They are younger, but not significantly younger. In Eastern Europe there is just a temporary infusion of labor against capital. Eastern Europe’s demographics look as old as Germany’s. Policy reactions will wait until there is a crisis looming. The risk will be that actions are taken too late. There is little pressure from the voting public for action unless the terror is at the gate, so to speak. Countries with expanding labor forces will have policies which diverge from those which do not. Policymakers in one country may again not understand why their counterparts seek different paths. Thus, during a crisis, actions will vary and the risk for financial market turmoil will increase.

By the year 2025 the demographic profile of the U.S. will look like the 1990 profiles of Germany and Japan. In the year 2025, the U.S. will have an incredibly good balance demographically. As one person leaves the labor force only about 1.1 or 1.2 people will be looking for jobs, an extremely stable situation. Because the leading Western countries still do not have a great deal of younger labor coming in, people are going to continue to vote for the status quo and for policies that support older people, such as the social welfare system of Europe. Something similar may occur in the U.S. because the voting block will vote for the status quo. With the recent election in the U.S. one might question this logic, but from a risk perspective no party can deviate too far from the needs of the status quo. From a monetary policy standpoint, the U.S.’s demographics over the next few years suggest that policies for zero or low inflation will dominate, not policies that transfer wealth. Thus, the possibility of having a set of policies that drives the economy into deflation is very high. Even now, we have experienced near zero to negative inflation rates in some parts of the developed world. Add to that a set of fiscal policies similar to those that exist in Europe, and we have slow growth in all the western countries. Why? Politics. In a democracy people vote for what they want. Without a democracy, we would not have these policies. We probably would have policies that were pro-growth or pro-something, but they would not necessarily be for the status quo. And that is precisely why the U.S. could not continue to dominate world monetary policy.

The future – emerging markets and expanding labor force
This analysis has so far focused on the democracies and the economies that were integrated effectively in the eighties. Today, the trading world is very different. The transition to the new economic world order happened some time between the late 1970s, when Deng Xiaoping opened up China to capitalism, and 1989, when the Soviet Union was dissolved. Both of these were important events for the world economy. Given the huge differences in the policies of the new entrants into the global economy from those of the old economies, an examination of other demographics and political decision processes is necessary to get a fuller picture. Europe, Japan and the U.S., as well as other advanced democracies such as Australia and Canada, are no longer impacted solely by internal policy decisions and potential crises. How the new reality plays out in exchange rates, trade balances, savings rates, growth, or lack of growth, and policy implementation is clearly impacted by the newer economies, which would not have been important factors just 20 years ago.

What happens in China, India, Brazil, Russia, and the commodity producers, such as the OPEC countries, needs to be considered. The commodity producers are lumped together because, for the most part, although not in all cases, these countries are not full democracies in the same sense as Europe, the U.S. and Canada, or Japan, where demographics will still set the tone.

In China, for example, the pursuit of an exchange rate policy is designed to keep labor cheap relative to capital, given its huge underemployed labor force. Real expected returns to capital must be maintained. China’s P/C and I/O ratios are 1.60 and 3.39, respectively. This bulge in new entrants has put extreme pressure on Beijing to create new jobs (see Figure A2-A). This pattern will change dramatically, however, by 2025 when the I/O index in China drops to just 1.30. India has a very different demographic pattern and is the world’s largest democracy. India must create jobs as well and, after years of neo-socialist policies that failed, is now seeing the development that was hoped for during the post WWII years.

India’s demographic picture (see Figure A2-C) by 2025 is very different from China’s, and one should expect to see different policies arising. For the moment, both countries have an abundance of labor, but the one child policy of China has clearly affected its demographic picture. For India, as the two graphs illustrate, for two reasons. First, China’s P/C and I/O ratios are 1.60 and 3.39, respectively. This bulge in new entrants has put extreme pressure on Beijing to create new jobs (see Figure A2-A). This pattern will change dramatically, however, by 2025 when the I/O index in China drops to just 1.30.

For fragile democracies, this supply of labor demanding gainful...
The impact of demographics on economic policy: a huge risk often ignored

employment opens the doors to strong leaders who make promises that often cannot be fulfilled. In this group of countries, one must place most of Africa as well, where, with the exception of just a few nations, democracy is mostly absent. Thus, from a global policy perspective, these countries are not likely to impact western economic policy, and will continue to be purely price takers for their products in the world’s commodity markets.

The Middle East also must be considered in the global picture, not only due to its oil, but due to the complete reversal of its demographics relative to Europe’s. Because Iran and Egypt have a similar percentage of their populations under the age of 25, jobs, jobs, and more jobs are essential. But how will this play out over the next few years? Commodity prices that have risen dramatically in the early part of this century have delayed, to some extent, the pressures that should naturally be emanating from these countries with underutilized labor. Over longer periods, history suggests that the shifts in wealth to the commodity producers will reverse, and this is likely to happen once again. As it does, the population pressures will no doubt impact the policies of even the most undemocratic regimes in the Middle East. These regimes will need to create jobs. This can be seen in much of the richer parts of the Middle East today, for example, in the explosion of investment in the United Arab Emirates to create activity that will be sustainable after oil wealth decreases.

In looking at how these trends affect western democracies, the voting public may wish to protect itself from the global trends not to their liking. This issue cannot be ignored. From a policy perspective, protectionism in those democracies is possible and actually probable over the next twenty years. We already see it with the agricultural policies of the U.S. and Europe and their implications for Africa. We have also seen this in the 2008 U.S. presidential election primary campaigns, where protectionism and immigration issues were raised. Could we see western democracies demand more protectionism? Like the high tariffs after World War I, demographic pressures from abroad might engender similar actions today in the West. Fortress Europe might feel it can make itself an economic area independent of much of the rest of the world. The U.S. with the North American free trade zone could pull back as well. Finally, the evidence of the global financial crisis of 2007 and 2008 suggests that doing so will be difficult at best, but this reaction is natural. The desire for stability, despite the U.S.’s political calls for change, will trump aggressive policy actions. Stability, or a return to stability when interrupted, is what voters will want.

Conclusion

This paper has examined the influence of demographics on the economic demands of a population in a democracy. All too often, policy discussions dismiss the logic of why a set of policies is chosen by one trading partner versus another. In the eighties, the Europeans and the Japanese seemed unable to understand why the U.S. ran a large fiscal deficit and had a loose monetary policy when it was obvious to Europe and Japan that anti-inflationary, low deficit policies made perfect economic sense. The fact that a particular policy is acceptable in one country, but not appropriate for others, can often only be explained by demographic differences among countries. In democracies, voters get what they want, unless there is a crisis. Clearly, countries have very different needs and financial goals dictated by their populations. When global economic policy was dictated by the Bank of England, the Gold Standard, or the Bretton Woods System, Japan’s policies reflected those of the international standard. With flexible exchange rates and a public satisfaction with the status quo, however, Japan attempted to satisfy the needs of its population. What was true for Japan is true for other democracies.

The expansion of the analysis in this paper to the ongoing period of globalization shows some of the inherent risks that are likely to emerge from a set of policies driven by popular approval. We see the risk as Europe and Japan become older, the U.S. enters into its most demographically stable period, and much of the developing world has to deal with its population growth. This paper highlights the conflicts that have arisen and will arise among countries as policies differ. Awareness of demographic trends in a world of democratic traditions will often lead to a more effective understanding of a nation’s economic policy and its impact on the world’s economy.

Appendix

The demographic graphs on the next pages were generated based on data from the United States Census Bureau found online at http://www.census.gov/ipc/www/idb/ .
The impact of demographics on economic policy: a huge risk often ignored

Figure A1-A – China Demographics: 1990
Source: U.S. Census Bureau, International Data Base

Figure A1-B – Germany Demographics: 1990
Source: U.S. Census Bureau, International Data Base

Figure A1-C – India Demographics: 1990
Source: U.S. Census Bureau, International Data Base

Figure A1-D – Japan Demographics: 1990
Source: U.S. Census Bureau, International Data Base

Figure A1-E – Mexico Demographics: 1990
Source: U.S. Census Bureau, International Data Base

Figure A1-F – Russia Demographics: 1990
Source: U.S. Census Bureau, International Data Base
The impact of demographics on economic policy: a huge risk often ignored

Figure A1-G – Turkey Demographics: 1990
Source: U.S. Census Bureau, International Data Base

Figure A2-B – Germany Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Figure A1-H – U.S. Demographics: 1990
Source: U.S. Census Bureau, International Data Base

Figure A2-C – India Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Figure A2-A – China Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Figure A2-D – Japan Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Percent
Age

Percent
Age

Percent
Age

Percent
Age

Percent
Age
The impact of demographics on economic policy: a huge risk often ignored

Figure A2-E - Mexico Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Figure A2-F - Russia Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Figure A2-G - Turkey Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Figure A2-H - U.S. Demographics: 2005
Source: U.S. Census Bureau, International Data Base

Figure A3-A - U.S. Demographics: 2025
Source: U.S. Census Bureau, International Data Base

Figure A3-B - Japan Demographics: 2025
Source: U.S. Census Bureau, International Data Base
We propose new measures of both risk and anticipated return that incorporate the effects of skewness and heavy tails from a financial return’s probability distribution. Our cosine-based analysis, which involves maximizing the marginal Shannon information associated with the Fourier transform of the distribution’s probability density function, also facilitates the use of Lévy-stable distributions for asset prices, as suggested by Mandelbrot (1963). The new measures generalize the concepts of standard deviation and mean in the sense that they simplify to constant multiples of these widely used parameters in the case of Gaussian returns.

Michael R. Powers
Professor of Risk Management and Insurance, Fox School of Business, Temple University, and Distinguished Visiting Professor of Finance, School of Economics and Management Tsinghua University

Thomas Y. Powers
Yale University

Abstract

We propose new measures of both risk and anticipated return that incorporate the effects of skewness and heavy tails from a financial return’s probability distribution. Our cosine-based analysis, which involves maximizing the marginal Shannon information associated with the Fourier transform of the distribution's probability density function, also facilitates the use of Lévy-stable distributions for asset prices, as suggested by Mandelbrot (1963). The new measures generalize the concepts of standard deviation and mean in the sense that they simplify to constant multiples of these widely used parameters in the case of Gaussian returns.
Risk and return measures for a non-Gaussian world

The most commonly used measure of a stock’s risk is the standard deviation (SD) of its annualized return. In modern portfolio theory, an investor is posited to behave as though the SD captures the entire risk dimension of the risk-versus-anticipated return trade-off.

The use of the SD is often justified by either, or both, of two assumptions: (1) that the investor’s utility function is quadratic, so that the mean and SD of the stock returns capture all the information relevant to the investor’s decisions; or (2) that investment returns possess a Gaussian (normal) distribution, so that the SD captures all characteristics of the return distribution not embodied in the mean. However, neither of these assumptions supporting the SD is particularly reasonable. Most researchers would agree that quadratic utility is unrealistic because, as one becomes wealthier, he/she tends to become less, not more, risk averse. Moreover, many financial-return distributions possess significant skewness and/or heavy tails, meaning that they cannot be Gaussian [Harvey and Siddique (2000), Mandelbrot (1963)]. Gaussian models, although fitting the centers of heavy-tailed and skewed distributions well, typically underestimate the probability of market bubbles and crashes.

One reason for the SD’s persistent popularity as a measure of asset risk is the lack of an attractive alternative. In the insurance world, where losses from single events are highly positively skewed, and possibly characterized by infinite means, researchers and practitioners do abandon the SD, but only in favor of risk measures that either fail to address heavy tails or fail to characterize the risk of the distribution as a whole [Powers (2007)]. Value at risk (VaR), for example, is often calculated as the 99th percentile of the underlying distribution. This places a maximum on the investor’s loss 99 percent of the time, but fails to describe how much could be lost the other 1 percent of the time. Furthermore, although percentiles can characterize one tail of a distribution, they generally say little or nothing about the center or other tail.

In the present research, we propose new measures of both risk and anticipated return that incorporate the effects of skewness and heavy tails from a financial return’s probability distribution. These new measures are derived from a cosine-based analysis that involves maximizing the marginal Shannon information associated with the Fourier transform of the distribution’s probability density function (PDF). The new measures generalize the concepts of standard deviation and mean in the sense that they simplify to constant multiples of these widely used parameters in the case of Gaussian returns.

The proposed approach not only permits consideration of skewness and heavy tails, but also facilitates use of the Lévy-stable family of distributions, first suggested by Mandelbrot (1963) for asset returns. Lévy-stable random variables represent sums of independent, identically distributed random variables as the number of summands tends to infinity. For this reason, they provide good models of annualized stock returns, which may be expressed as sums of large numbers of small-interval returns. The principal historical obstacle to using Lévy-stable distributions has been largely technical; that is, the distributions lack analytically expressible PDFs, except in special cases, such as the Gaussian and Cauchy distributions. We avoid this difficulty by working in the frequency domain.

Cosine-based measures of risk and anticipated return

When investing, one constantly trades off the effects of risk and anticipated return. Conceptually, this may be viewed as a trade-off between symmetry and asymmetry. Specifically, we can identify the symmetric components of a return distribution with risk and the asymmetric components with anticipated return. For a fixed level of risk, one would rather have greater probability placed at higher levels of return and less probability at lower levels, creating the positive asymmetry associated with preferred returns.

In modern portfolio theory, one uses the mean to measure the asymmetric component of a distribution. In this calculation, an asymmetric bonus is assigned to each possible outcome. This bonus, proportional to the outcome’s absolute distance from zero, is positive on the right-hand side of zero and negative on the left-hand side. The mean is then the expected value of the bonus.

At the same time, the SD is used to measure the distribution’s symmetric component. In this calculation, one assigns a symmetric penalty, the squared absolute deviation from the mean, to each possible outcome. This penalty is positive on both sides of the mean. The standard deviation is then the square root of the expected value of the penalty: \(\text{SD}(X) = \sqrt{\text{E}[(X-\text{E}(X))^2]} \)

Considering the above expression, we see that the SD is formed by way of a three-step process:
1. Selecting a specific representative center within the sample space of X (in this case, the mean).
2. For each possible value of X, weighing a particular symmetric transformation of that value’s absolute deviation from the representative center (in this case, the 2nd power), by its relative likelihood of occurrence.
3. Solving for a risk measure with the same units as X by inverting the transformation used in step 2.

The 2nd power used in the symmetric transformation is clearly not the only possible choice. Taking the absolute deviation to the 4th power, for example, might provide a better measure of tail behavior. However, a major drawback of the SD and other power-function-based risk measures is that they are often undefined for heavy-tailed distributions. In fact, the only power-function-based risk measure defined for all heavy-tailed distributions is that employing the uninformative 0th power.

1 Throughout the article, we use the term ‘anticipated return’ to mean a representative center (i.e., measure of central tendency) of the return distribution.
2 By ‘heavy tails,’ we mean that the asset returns have an infinite variance. Another term for heavy tails is ‘leptokurtosis.’
3 Powers (2009) provides a simple mathematical illustration of how an underlying liability loss from a well-behaved distribution (with finite integer moments) can be transformed quite easily into an insurance-company claim payment with unbounded mean.
4 Lévy-stable distributions are also sometimes called ‘stable,’ ‘stable Paretian,’ or ‘Pareto-Lévy’ distributions in the research literature.
Instead of a power function, we propose using an inverted (negative) cosine function for the symmetric transformation. Any risk measure based upon this type of function will be defined for all heavy-tailed distributions. By substituting a negative cosine function for the power transformation in step 2 of the above process, we thus obtain the class of cosine-based risk measures, s_{ω}, for frequency $\omega > 0$ and representative center (i.e., anticipated return) r_{ω}. As with the power-function-based risk measures, the center selected in step 1 is chosen to minimize the expected value computed in step 2; that is, r_{ω} is the value of r that minimizes $E[-\cos(\omega(X-r))]$.

The negative cosine constitutes a natural alternative to the power function because the cosine provides the symmetric bases of the Fourier approximation to the PDF in much the same way as the power function with even integer exponents provides the symmetric bases of the Taylor approximation. To implement the new risk measure we must choose a fixed frequency, ω, at which to calculate the measure, just as a fixed exponent (i.e., the 2nd power) must be selected for the power-function-based risk measure. For any constant value of ω, greater spread of the financial-return distribution (whether from increased dispersion or heavier tails) will cause more of the distribution’s probability to lie outside the central ‘cup’ of the cosine-based penalty function. Therefore, it seems intuitively desirable to make ω inversely proportional to the spread of the distribution, so that a greater portion of the sample space falls inside the central region.

To justify this approach formally, we select ω to maximize the marginal Shannon information associated with the Fourier transform of the relevant PDF. The selected ω^* is thus the choice that, compared to all individual alternatives, provides the most information about the distribution. Given this value of ω^*, we then obtain the following expressions for anticipated return and risk, respectively: $R_{\omega^*} = \text{Root}_{1}(E[\sin(\omega^*(X-r))])$ and $s_{\omega^*} = (1/\omega^*)\cos^{-1}(\exp(-\omega^*(0, 2)))$.

\begin{align*}
\omega^* &= \frac{1}{c\sqrt{2}}, \\
s_{\omega^*} &= \cos^{-1}\left(\frac{c}{\sqrt{2}}\right) - 1
\end{align*}

To illustrate behaviors of the above expressions graphically, we fix the parameters $c = 0.30$ and $m = 0.10$ to agree roughly with actual market-return data under a Gaussian assumption, and plot the optimal frequency, ω^*, versus α in Figure 1, and the general return/risk ratio, $r_{\omega^*}/s_{\omega^*}$, versus α in Figure 2.

With regard to ω^*, Figure 1 shows that this quantity decreases as the distribution’s tails become heavier, while remaining entirely unaffected by skewness. As noted above, this behavior makes intuitive sense: for distributions that are more spread out, more information about the PDF is captured by choosing a smaller value of ω, so that a greater portion of the sample space falls inside the central cup of the cosine-based penalty function.

The ratio, $r_{\omega^*}/s_{\omega^*}$, simplifies to $E[X] + \cos^{-1}(\exp(-\omega^*))SD[X] = 1.0880E[X]/SD[X]$ when asset returns are Gaussian (i.e., $\alpha = 2$, $\beta = 0$, and $c = SD[X]/\sqrt{2}$). This quantity thus permits the extension of mean/SD analysis to all distributions within the Lévy-stable family. From Figure 2, we see that for a fixed value of β, the ratio decreases as the distribution’s tails become heavier. Also, for a fixed value of α, the ratio increases as skewness becomes more positive. Thus, we

Properties of cosine-based measures: the Lévy-Stable family

To illustrate various properties of ω^*, r_{ω^*}, and s_{ω^*}, let a stock’s annualized return, X, be characterized by the Lévy-stable distribution with parameters (α, β, c, m), where:

- $\alpha \in (0, 2)$ is the tail parameter (with smaller values of α implying heavier tails, and $\alpha = 2$ in the Gaussian case).
- $\beta \in [-1, 1]$ is the skewness parameter (with negative [positive] values implying negative [positive] skewness, and $\beta = 0$ in the Gaussian case).
- $c \in (0, \infty)$ is the dispersion parameter (which is proportional to the standard deviation in the Gaussian case — i.e., $c = SD[X]/\sqrt{2}$).
- $m \in (\infty, 0)$ is the location parameter (which equals the median if $\beta = 0$, and also equals the mean if $\alpha \in (1, 2]$ and $\beta = 0$, as in the Gaussian case).

Although the Lévy-stable PDF can be written analytically for only a few special cases (i.e., the Gaussian and the Cauchy distributions), the family is neatly described by its characteristic function, from which it is straightforward to derive the following expressions:

$$\omega^* = \frac{1}{c\sqrt{2}}.$$
may conclude that, for distributions within the Lévy-stable family, investors tend to require higher returns from stocks with heavier tails and/or negative skewness, and lower returns from stocks with lighter tails and/or positive skewness.

The observation that investors require lower returns from stocks with positive skewness is consistent with empirical results of Harvey and Siddique (2000) and others. Interestingly, Figure 2 reveals that the benefits of positive skewness can easily outweigh the drawbacks of heavier tails. Most specifically, if one accepts estimates of α in the range 1.71 to 1.89 (as found by Bidarkota and McCulloch (2004)), then it does not take much positive skewness to offset the modest decrease in the general return/risk ratio associated with such deviations from the Gaussian assumption (i.e., from 0.2564 at $\alpha = 2$ to either 0.2418 at $\alpha = 1.71$ or 0.2513 at $\alpha = 1.89$). On the other hand, quite significant decreases in the general return/risk ratio could arise from the combined effect of heavier tails and negative skewness. This is clearly the scenario of greatest potential impact to investors.

Conclusions

In the present study, we have found that cosine-based measures of risk and anticipated return provide useful generalizations of the SD and mean that may be applied to financial-return distributions with significant skewness and/or heavy tails.

The first step in constructing the cosine-based measures is to select an appropriate frequency, $\omega > 0$, which is accomplished by maximizing the marginal Shannon information associated with the Fourier transform of the relevant PDF. In applying this technique to the family of Lévy-stable return distributions, we find that the optimal value of the parameter increases as the return distribution becomes more spread out (i.e., from increased dispersion and/or heavier tails). We also observe that investors tend to require higher returns from stocks with heavier tails and/or negative skewness, and lower returns from stocks with lighter tails and/or positive skewness.

In future research, we plan to study statistical-estimation procedures for the four parameters of the Lévy-stable family. A longer-term objective is to extend the cosine-based paradigm to account for statistical dependencies among the various components of an investor’s portfolio. This further work will necessitate the development of a robust alternative to the ordinary ‘correlation’ measure commonly used with Gaussian distributions.

References

Abstract
Is there a short- to medium-term linkage between macroeconomic and exchange rate volatility? This paper provides a clear-cut answer to the above question, pointing to significant linkages and trade-offs between macroeconomic and exchange rate volatility, particularly involving output volatility. Evidence of bidirectional causality is also found, with macroeconomic volatility showing a stronger causal power than exchange rate volatility. Many tasks in finance, such as option pricing, risk analysis, and portfolio allocation, rely on the availability of good forecasting models. The paper points to new directions for the construction of improved medium-term volatility models.
As pointed out by recent contributions to the literature, macroeconomic volatility does not seem to be an important source of exchange rates volatility for G-7 countries. In fact, little evidence of exchange rate regime dependence has been found in macroeconomic volatility. For example, unlike exchange rates volatility, macroeconomic volatility does not tend to be higher in floating rate regimes than in fixed rates ones. Moreover, little evidence of volatility conservation has also been found. Apart from output volatility, no trade-offs between macroeconomic and exchange rates volatility have been found, suggesting that fixing exchange rates may not lead to higher macroeconomic volatility in general: excess volatility simply disappears [Flood and Rose (1995, 1997)]2.

The above findings are not, however, inconsistent with second moments implications of fundamental models of exchange rate determination, predicting a linkage between exchange rate and macroeconomic volatility, for two main reasons. Firstly, once sticky prices are allowed for, only a weak response of macroeconomic variables to changes in exchange rate regimes and volatility can be expected in the short- to medium-term [Duarte (2003)]. Secondly, other determinants than macroeconomic fundamentals may be important for exchange rate volatility in the short- to medium-term, such as excessive speculation [Flood and Rose (1999)], heterogeneous agents [Muller et al. (1997)], overshooting effects related to information problems [Faust and Rogers (2003)], and information flows [Andersen and Bollerslev (1997)], which are, moreover, responsible for the strong persistence of volatility shocks3.

Unlike from the descriptive analysis carried out in Flood and Rose (1995, 1997), in this paper accurate modeling of the persistence properties of the data has been carried out in the framework of a new fractionally integrated factor vector autoregressive (FI-F-VAR) model. This latter model allows us to investigate linkages across variables and countries involving both common deterministic and stochastic components, consistent with recent findings in the literature pointing to the presence of both structural change and stationary long memory in the volatility of financial asset returns and macroeconomic variables4. Hence, both long-term and medium-term relationships can be investigated in the current framework, controlling for short-term dynamic linkages as well. Furthermore, conditioning is made relative to a very large information set since the analysis is carried out considering the entire G-7 macroeconomic structure jointly, allowing therefore for a fine control of the interrelations occurring across countries, currencies, and macroeconomic factors.

The findings of the paper are clear-cut, pointing to significant short- to medium-term linkages and trade-offs between macroeconomic and exchange rate volatility, particularly involving output volatility. Moreover, evidence of bidirectional causality has been found, with macroeconomic volatility showing a stronger causal power than exchange rate volatility. Hence, while factors other than macroeconomic fundamentals may be important determinants of exchange rates volatility in the short- to medium-term, neglecting the impact of macroeconomic volatility may be inappropriate.

Disposing of accurate models for volatility dynamics is important under different points of view. In fact, in addition to the understanding of the causes of financial assets volatility, volatility forecasting also depends on the availability of a good volatility model. Important tasks in finance, such as option pricing, risk measurement, in the context of Value at Risk (VaR) models, and portfolio allocation models, built on the basis of forecasts of returns, variances, and covariances, do rely on good forecasting models.

The results of the study do point to new directions for the construction of improved short- to medium-term volatility models. From a medium-term perspective, forecasting models conditioned to an information set containing not only their own historical volatilities but also the history of key macroeconomic volatility series may lead to more accurate predictions of the overall level of future volatility. Insofar as feedback effects between macroeconomic and financial markets volatility can be found, multi-period predictions could also benefit from a multivariate framework, where interactions between the involved variables may be fully accounted for. The multivariate model proposed in this paper does provide a viable and effective framework suited to the task.

Econometric methodology

Consider the following fractionally integrated factor vector autoregressive (FI-F-VAR) model:

\[
x_t = \Lambda \mu_t + \Lambda_f f_t + C(L)(x_{t-1} - \Lambda \mu_{t-1}) + \nu_t
\]

\[
D(L)f_t = \Theta_t
\]

where \((x_t - \Lambda \mu_t)\) is a \(n\)-variate vector of stationary long memory processes \((0 < d_i < 0.5, i=1,...,n) [Baillie (1996)]\), \(f_t\) is an \(r\)-variate vector of stationary long memory factors, \(\mu_t\) is an \(m\)-variate vector of common break processes, \(\nu_t\) is an \(n\)-variate vector of zero mean idiosyncratic i.i.d. shocks, \(\Theta_t\) is an \(r\)-variate vector of common zero mean i.i.d. shocks, \(E[\Theta_t \Theta_t'] = 0\) all i,t,s, \(\Lambda_f\) and \(\Lambda_\mu\) are \(nxr\) and \(nxm\) matrices of loadings, respectively, \(C(L)\) is a finite order matrix of polynomials in the lag operator with all the roots outside the unit circle, i.e., \(C(L) = C_0 + C_1 L + C_2 L^2 + \cdots + C_p L^p\), \(C_i i=1,...,p\) is a square matrix of coefficients of order \(n\), and \(D(L) = \text{diag}((t-L)^{d_1}, (t-L)^{d_2}, \cdots, (t-L)^{d_r})\) is a diagonal matrix in the polynomial operator of order \(r\). The fractional differencing parameters \(d_i\) as well as the \(\mu_t\) and \(f_t\) factors, are assumed to be known, although they need to be estimated.

2 Similarly, Baxter and Stockman (1989) had previously found little evidence that macroeconomic volatility or trade flows are influenced by exchange rate regimes.

3 Differently, Hutchinson and Walsh (1992) and Bayoumi and Eichengreen (1994) have found evidence consistent with the insulation properties of a flexible exchange rate regime, while both Arize et al. (2000) and Rose (2000) have found evidence of significant negative, yet small, effects of exchange rate volatility on trade flows.

4 According to Muller et al. (1997), the interaction in the market of agents with different time horizon leads to long memory in exchange rates volatility. Differently, Andersen and Bollerslev (1997) explain long memory in exchange rates volatility as the consequence of the aggregation of a large number of news information arrival processes.

4 See for instance Granger and Hyung (1999) for structural breaks in the volatility of financial asset returns; Baillie et al. (1996) and Andersen et al. (1997) for long memory; Lobato and Savin (1998), Morana and Beltratti (2004), and Baillie and Morana (2007) for both features. For structural breaks and long memory in macroeconomic volatility see Beltratti and Morana (2006).
However, this is not going to affect the asymptotic properties of the estimator, since non-consistent estimation techniques are available for all the parameters and unobserved components.

The reduced fractional VaR form

By taking into account the binomial expansion in equation (2), and substituting into equation (1), the infinite order vector autoregressive representation for the factors f_t and the series x_t can be rewritten as:

\[
\begin{align*}
L_{mm} - L_{mm}F(L) = C(L)\Phi(L)\sum_{j=0}^{\infty} L_{mm}L_{mm}^{-1} F(L) C(L) = & \Phi(L) \sum_{j=0}^{\infty} L_{mm}L_{mm}^{-1} F(L) \\
= & \Phi(L) \sum_{j=0}^{\infty} L_{mm}L_{mm}^{-1} F(L)
\end{align*}
\]

where $D(L) = (I - \Phi(L))$, $\Phi(L) = \Phi_1 L^1 + \Phi_2 L^2 + \ldots + \Phi_i$, $i = 1, \ldots$, is a diagonal matrix of coefficients of dimension r.

\[
\begin{align*}
D(L) & = (I - \Phi(L)) = \Phi_1 L^1 + \Phi_2 L^2 + \ldots + \Phi_i, i = 1, \ldots
\end{align*}
\]

with variance covariance matrix

\[
E[\epsilon_t \epsilon_t'] = \Sigma = \begin{bmatrix}
S_{11} & S_{12} L_f \\
S_{21} L_f' & S_{22} L_f'
\end{bmatrix}
\]

where $E[\eta_t \eta_t'] = \Sigma$ and $E[\eta_t \epsilon_t'] = \Sigma$. Σ

Estimation

The estimation problem may be written as follows: min $T\Sigma = \epsilon_t \epsilon_t'$ $x_t L_{mm} L_{mm}^{-1} x_t$, where $x_t = (1 - C(L)L)$ x_t. Yet, since the infinite order representation cannot be handled in estimation, truncation to a suitable large lag for the polynomial matrix $\Phi(L)$ is required. Hence, $\Phi(L) = \Sigma + \Sigma_{\eta}$. This model can be understood as a generalization of the (static) factor VAR model proposed by Stock and Watson (2005), allowing for both deterministic and long-memory stochastic factors, and can be estimated by following an iterative process (see Morana 2008) for estimation details and Morana (2007a) for supporting Monte Carlo evidence. See also Morana (2008) for details concerning the identification of the common and idiosyncratic shocks.

Data and modeling issues

Instead of considering Italy, Germany, and France as separate countries, the Euro Area-12 aggregate data have been employed in the paper. This allows us to focus on the most recent float period (1980-2006), has been almost entirely neglected in the literature so far. Monthly time series data for the five countries involved – the U.S., Japan, the Euro-12 area, the U.K., and Canada – over the period 1980:1-2006:6, have been employed. In addition to the four nominal exchange rate variables against the U.S. dollar, the U.K./U.S. rate, the GBPE/U.S. rate, and the Canadian $/U.S. rate – four macroeconomic variables for each country have also been considered, the real industrial production growth rate, the CPI inflation rate, the nominal money growth rate, and the nominal short-term interest rates. γ.

Monthly (log) volatility proxies for the above variables have been constructed as the (log) absolute value of the innovations of the various series, obtained from the estimation of a standard VAR model for the 24 variables in the dataset, with lag length set to two lags on the basis of misspecification tests and the AIC criterion. Although this yields noisy volatility proxies, the use of an effective noise filtering procedure grants reliability to the results obtained in the study. The selection of the dataset follows the monetarist models of exchange rate determination, from which the following reduced form exchange rate equation can derived: $e_t = \rho_0 + \rho_1 e_{t-1} + \rho_2 e_{t-2} + \ldots + \rho_i, i = 1, \ldots$, stating that the log level of the nominal exchange rate (e) is determined by differentials in the log money supplies (m^2), log real outputs (y), nominal interest rates (i), and inflation rates (π) between the domestic and foreign (starrred variables) countries. Hence, a general long-term reduced form equation may be written as $e_t = z_t^1 + e_t$, where the vector z_t contains the macroeconomic fundamentals and e_t is a zero mean stochastic disturbance term capturing non-fundamental determinants, for instance related to speculative behavior in the exchange rate market. Hence, by moving to second moments, assuming orthogonal fundamentals and non-fundamental determinants, it follows $\sigma^2 e_t = \sigma^2 z_t^1 + \sigma^2 e_t$, pointing to a linkage between exchange rate $(\sigma^2 e_t)$, fundamental $(\sigma^2 z_t^1)$, macroeconomic and non-fundamental unconditional volatility $(\sigma^2 e_t)$.

Consistent with general findings in the literature and the results of this study, both exchange rate and macroeconomic volatility is modeled as a long memory process (I(d), 0<d<0.5), subject to structural change. Hence, following Morana (2007a) for the generic ith exchange rate volatility process one has $\alpha^2 t_L = b_1 + P_t + \eta T$, where b_3 is the deterministic break process (time-varying unconditional variance) of the series – i.e., the permanent or long-term component – expected to be related to fundamentals – i.e., $P_t = f(\alpha^2 t_L, b_3)$, P_t is the persistent (long memory, I(d)) or medium-term component – expected to be related to the non fundamental volatility component or only weakly related to fundamentals – i.e., $P_t = f(\alpha^2 t_L, b_3)$, in the light of the explanations provided for long memory in volatility (Andersen and Bollerslev (1997), Muller et al. (1997)) – and ηT is the non-persistent or noise component (I(0)), with $E[P_t] = 0$ and $E[\eta T] = 0$.

5 In particular, if $\alpha=0, \eta=0, \mu=0$ the Frenkel real interest differential model is obtained; if $\alpha=0, \eta=0, \mu=0$ the flexible price monetarist model is obtained; if $\alpha=0, \eta=0, \mu=0$ the flexible price with hyperinflation monetarist model is obtained.

6 Nominal money balances are given by M2 for the U.S., M2+CD for Japan, M3 for the Euro Area and Canada, and M4 for the U.K. The aggregates employed are the one usually employed to measure broad money in each of the countries investigated. On the other hand, the short-term rate refers to three-month government bills. The use of broad money is justified by country homogeneity, since, as far as Japan is concerned, in the view of the near liquidity trap experienced by this latter countries over the 1990s, the use of narrow money would have been problematic.

7 Synthetic Euro Area data are employed in this study. The author is grateful to the ECB, Monetary Policy Strategy Division, for data provision.
Linkages among volatility series can then concern either the long-term or break process component b_t or the medium-term or long memory component P_t, or both. The FiF-VAR model allows us to account for both kinds of linkages, controlling for short-term dynamic linkages as well. Moreover, conditioning is made relative to a very large information set, i.e., the entire G-7 macroeconomic structure, which therefore allows us to control the interrelations occurring across countries, currencies, and macroeconomic factors.

Persistence properties

In the light of recent results in the literature pointing to the presence of both long memory and structural change in the volatility of financial assets, as well as in macroeconomic variables, the persistence properties of the data have been assessed by means of structural break tests and semiparametric estimators of the fractional differencing parameter. Structural change analysis has been carried out by means of the Dolado et al. (2004) test, modified to account for a general and unknown structural break process. Dolado et al. (2004) have proposed a Dickey-Fuller type of test for the null of $I(d)$ behavior, O-d-e-l, against the alternative of trend stationarity $I(0)$, with or without structural breaks. A simple generalization of the model, allowing for a general nonlinear deterministic break process, can be obtained by specifying the trend function according to the Gallant (1984) flexible functional, as in Enders and Lee (2004):

$$\Delta y_t = \mu_0 + \mu_1t + \beta_{1}\log(t) + \beta_2\sin(2\pi\log(t)) + \beta_3\cos(2\pi\log(t))$$

allowing for a suitable order (p) for the trigonometric expansion. The process under H_1 is then $\Delta y_t = \Delta^d y_{t-1} - \Delta^d y_{t-1} + \sigma_d y_t + \sigma'_d y_{t-1} + \epsilon_t$, with $\epsilon_t \sim i.i.d(0, \sigma^2_\epsilon)$. The null hypothesis of $I(d)$ implies $\phi = 0$, while the alternative of $I(0)$ stationarity plus structural change implies $\phi < 0$. Critical values can be easily computed, case by case, by means of the parametric bootstrap (Poskitt 2005). Monte Carlo evidence supporting the use of the above adaptive approach for structural break estimation can be found in Cassola and Morana (2006), where details concerning the selection of the order of the trigonometric expansion can also be found.

Moreover, since the computed log volatility series are likely to be characterized by observational noise, the fractional differencing parameter employed in the test has been estimated by means of the Sun and Phillips (2003) non-linear log periodogram estimator, which does not suffer from the downward bias affecting standard semiparametric estimators in this latter situation.

Structural break and long memory analysis

As shown in Figure 1, Panel A, there is strong evidence of structural change in the volatility series investigated, since the null of pure long memory against the alternative of structural change is strongly rejected (at the 1% significance level) for all the series.
Apart from the Euro Area CPI inflation rate and the U.S. short-term rate series\(^{10}\). Moreover, as shown in Panel B, the Sun and Phillips (2003) non-linear log periodogram estimation carried out on the break-free processes points to a moderate degree of long memory characterizing the break-free processes, ranging from 0.249(0.086) to 0.363(0.081), and to large inverse long-run signal to noise ratios, ranging from 16.960(5.162) to 30.113(7.236). Since in none of the cases the Robinson and Yajima (2001) test allows us to reject the null of equality of the fractional differencing parameter, a single value for the fractional differencing parameter has then been obtained by averaging the twenty four available estimates, yielding a point estimate of 0.311(0.084). Similarly, the average value of the inverse long-run signal to noise ratio is equal to 22.245(5.256). In the light of the above results, the estimated candidate break processes have then been retained as non-spurious for all the series. In fact, in none of the cases the removal of the estimated break process from the actual series has led to an antipersistent process, i.e., to an integrated process (d) with d<0 (Granger and Hyung (2004))\(^{11}\).

Yet, given the size of the inverse long-run signal to noise ratios, filtering of the volatility components is required before further analysis is carried out on the break-free series. In the paper the approach of Morana (2007b) has been implemented. The approach is based on flexible least squares estimation and it has been found to perform very satisfactorily by Monte Carlo analysis, independently of the actual characteristics of the noisy stochastic process, i.e., deterministic versus stochastic persistence and long versus short memory, also when the inverse signal to noise ratio is very large\(^{12}\).

The FI-F-VAR model

The minimum dimension of the FI-F-VAR model in the current data framework is twenty four equations, corresponding to the log volatility series for the twenty macroeconomic series and the four exchange rate series. Additional equations would refer to the common long memory factors, whose existence has however to be determined through principal components analysis (PCA), consistent with the first step required for the estimation of the FI-F-VAR model.

In order to investigate medium-term linkages between macroeconomic and exchange rates volatility, the two-country specification implied by standard economic theories of bilateral exchange rates determination has been employed. Hence, linkages between macroeconomic and exchange rates volatility have been investigated with reference to a single bilateral exchange rate at the time and the macroeconomic variables of the involved countries. Moreover, in order to focus on short- to medium-term linkages only, the analysis has been carried out on the break-free processes obtained in the previous section.

Principal components analysis

As shown in Figure A1 in the Appendix, principal components analysis points to interesting linkages involving macroeconomic and exchange rate volatility in the medium term. In fact, in all of the cases seven principal components out of nine are necessary to explain about 90% of total variability, with the bulk of exchange rates volatility (58% to 83%) explained by the first five components. Similarly, the proportion of macroeconomic volatility explained by the first five components is in the range 50% to 95% for output volatility, 70% to 82% for inflation volatility, 62% to 85% for interest rate volatility, and 61% to 93% for money growth volatility. Furthermore, other linkages can be noted across currencies. For example, an interesting linkage involving output growth and exchange rate volatility for the €/U.S.$ and the ¥/U.S.$ exchange rates can be found. In fact, in both cases the dominant component for exchange rates volatility is also dominant for output growth volatility (49% for €/JA and 35% and 25% for gUS and, respectively; 39% for e JA and 46% and 12% for qUS and gJA, respectively). In addition, while interest rate volatility is related to exchange rates volatility for both currencies, money growth volatility is related to exchange rates volatility only for the €/U.S.$ exchange rate. For inflation volatility the linkage is only relevant for the ¥/U.S.$ exchange rate. On the other hand, for the Canadian $/U.S.$ exchange rate the linkage involves all the macroeconomic volatility series. Finally, for the €/U.S.$ exchange rate the linkage is weaker than for the other currencies, being non-negligible only concerning inflation volatility.

By assessing the proportion of variance explained by the same principal component, but with impact of opposite sign, for the various break-free series some evidence of a medium-term trade-off is weaker than for the other currencies, being non-negligible only concerning inflation volatility.

![Table: Proportion of variance explained by principal components](image)

<table>
<thead>
<tr>
<th></th>
<th>€/U.S.$</th>
<th>¥/U.S.$</th>
<th>£/US$</th>
<th>CA$/U.S.$</th>
</tr>
</thead>
<tbody>
<tr>
<td>qUS</td>
<td>0.70</td>
<td>0.48</td>
<td>0.70</td>
<td>0.63</td>
</tr>
<tr>
<td>qJA</td>
<td>0.50</td>
<td>0.22</td>
<td>0.87</td>
<td>0.51</td>
</tr>
<tr>
<td>rUS</td>
<td>0.83</td>
<td>0.47</td>
<td>0.31</td>
<td>0.41</td>
</tr>
<tr>
<td>rJA</td>
<td>0.53</td>
<td>0.68</td>
<td>0.60</td>
<td>0.86</td>
</tr>
<tr>
<td>sUS</td>
<td>0.40</td>
<td>0.49</td>
<td>0.17</td>
<td>0.51</td>
</tr>
<tr>
<td>sJA</td>
<td>0.34</td>
<td>0.49</td>
<td>0.36</td>
<td>0.29</td>
</tr>
<tr>
<td>mUS</td>
<td>0.47</td>
<td>0.82</td>
<td>0.20</td>
<td>0.54</td>
</tr>
<tr>
<td>mJA</td>
<td>0.77</td>
<td>0.70</td>
<td>0.80</td>
<td>0.73</td>
</tr>
</tbody>
</table>

The table reports the proportion of variance for each macroeconomic volatility variable involved in the trade-off. Hence, i=EA for the €/U.S.$, JA for the ¥/U.S.$, U.K. for the £/U.S.$, CA for the CA$/U.S.$ The variables investigated are log volatilities for real output growth rates (q), inflation rates (s), short-term nominal interest rates (r), nominal money growth rates (m). Columns correspond to the four exchange rates.

Figure 2 - Medium-term trade-off analysis

\(^{10}\) Following the Monte Carlo results reported in Cassola and Morana (2006), a fourth order trigonometric expansion has been employed for the computation of the structural break tests.

\(^{11}\) The minimum p-value for the Robinson and Yajima (2002) equality test is equal to 0.423, which is very far apart from any usual significance value for the rejection of a simple or joint null hypothesis.

\(^{12}\) In order to assess the robustness of the results, the break tests have been repeated considering trigonometric expansions of the first, second, and third order, allowing the fractional differencing parameter to take three different values, d=0.2, 0.3, 0.4 in each case. The results point to the robustness of the structural break tests to both the order of the trigonometric expansion and the selection of the fractional differencing parameter.

\(^{13}\) All the empirical findings reported in the paper are robust to the noise filtering procedure implemented. Details are not reported for reasons of space, but are available upon request from the author.
between exchange rate and macroeconomic volatility can also be found (Figure 2). The following findings are noteworthy. Firstly, on average, the variables which are more affected by the trade-off are output growth (58%), inflation (59%), and money growth (63%) volatility. On the other hand, short-term rate volatility (39%) is the variable for which the trade-off is weakest. Interesting differences can also be found across exchange rates on the same horizon. For example, the trade-off is in general strongest for output growth for the U.K and for money growth for the U.S. Moreover, for the latter two variables the trade-off is weakest for Japan. In addition, for inflation and the short-term rate the trade-off is strongest for Canada and the U.S./Japan, respectively, and weakest for the U.K. In general, the U.S is a country strongly affected by the trade-off, followed by the U.K. and the Euro Area, while Canada and Japan fall in an intermediate ranking.

Granger causality analysis

Since principal components analysis cannot establish any causal direction in the linkage between macroeconomic and exchange rate volatility, Granger causality analysis has been carried out following Chen (2006) and Bauer and Maynard (2006), i.e., by means of standard VAR analysis carried out using the pre-filtered series for the long memory effects and by means of VAR analysis carried out on the actual series, exploiting the surplus lag principle, respectively. Hence, with reference to the ith variable of interest, the following equations have been estimated: $y_{s,t}^{*} = \alpha + \sum_{j=1}^{m+1} \gamma_j y_{s,t-j} + \sum_{j=1}^{m} x_{t-j} \beta_j + \epsilon_t$, with $m = 1, \ldots, 12$, where the vector of forcing variables for the variable of interest $y_{s,t}^{*}$ is given by x_t, which is the vector x_t excluding the variable of interest $y_{s,t}^{*}$. For example, $x_t = (x_1, y_{s,t}^{*}, i=1, \ldots, 24)$ in the first case [Chen (2006) test] and the vector of break-free actual variables $(y_{s,t}^{*} - b_{p,i,t}, i=1, \ldots, 24)$ in the second case [Bauer and Maynard (2006) test]. The auxiliary VAR regressions have been estimated considering an increasing number of lags m, i.e., $m = 1, \ldots, 12$, and the null of Granger non-causality from appropriate subsets of variables in x_t to variable $y_{s,t}^{*}$ has been tested using the Wald test, for all the different lag orders.

A summary of the results of the Granger causality analysis are reported in Figure 3. As is shown in the table, evidence of bidirectional causality can be found at the 1% significance level, independently of the approach implemented. In particular, the findings are similar across countries, also pointing to a similar causal power of macroeconomic and exchange rate volatility. In general, output and inflation volatility tend to have a stronger impact on exchange rate volatility than interest rate and money growth volatility. The impact of exchange rate volatility on macroeconomic volatility tends to be homogeneous across variables.

Forecast error variance decomposition

On the basis of the results of the principal components analysis and the relatively high number of factors necessary to explain the bulk of total variance for the break-free variables, no common long memory factors have been added to the model. Hence, the final specification of the FI-F-VAR model is composed of just the twenty-four equations corresponding to the log volatilities for twenty-four variables in the dataset. The model has then been estimated without long memory prefiltering, exploiting the (truncated) infinite order VAR representation of the VARFIMA structure of the model, including seven common deterministic break processes.

Thick estimation [Granger and Jeon (2004)] has been implemented by optimally selecting the lag order by information criteria and

<table>
<thead>
<tr>
<th>Chen tests</th>
<th>g_{US}</th>
<th>π_{US}</th>
<th>s_{US}</th>
<th>m_{US}</th>
<th>q</th>
<th>π</th>
<th>s</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{US}</td>
<td>0.004</td>
<td>0.094</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>q_{UK}</td>
<td>0.035</td>
<td>0.000</td>
<td>0.002</td>
<td>0.007</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>q_{CA}</td>
<td>0.044</td>
<td>0.001</td>
<td>0.000</td>
<td>0.027</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>q_{JA}</td>
<td>0.011</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>q_{US}</td>
<td>0.000</td>
<td>0.022</td>
<td>0.002</td>
<td>0.007</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bauer-Maynard tests</th>
<th>g_{US}</th>
<th>π_{US}</th>
<th>s_{US}</th>
<th>m_{US}</th>
<th>q</th>
<th>π</th>
<th>s</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{US}</td>
<td>0.002</td>
<td>0.017</td>
<td>0.000</td>
<td>0.019</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>q_{UK}</td>
<td>0.768</td>
<td>0.020</td>
<td>0.017</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>q_{CA}</td>
<td>0.029</td>
<td>0.011</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>q_{US}</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The table reports the minimum p-value for the causality tests. Figures for the macroeconomic variables refer to the null of no Granger causality from exchange rate volatility to macroeconomic volatility. Figures for the exchange rate series refer to the null of no Granger causality from macroeconomic volatility to exchange rate volatility, distinguishing among categories of macroeconomic variables. The variable investigated are log volatilities for real output growth rates (q), inflation rates (π), short-term nominal interest rates (s), nominal money growth rates (m), and bilateral nominal exchange rates returns for the $€$, the $¥$, the £, and the Canadian $ against the U.S.$ (e).

Figure 3 - Granger causality tests

14 The selection is consistent with the results of the principal components analysis carried out on the break processes for the 24 variables involved, pointing that seven common break processes (factors) are necessary to account for about 95% of total variance. Detailed results are not reported, but are available upon request from the author.
Medium-term macroeconomic determinants of exchange rate volatility

As shown in Figure A2 in the Appendix, the results of the forecast error variance decomposition (FEVD) analysis are clear-cut, pointing to mostly idiosyncratic long memory dynamics for all the variables. In fact, the own shock explains the bulk of volatility fluctuations for all the variables at all the horizons, with the contribution of the other shocks increasing as the forecast horizon increases. For instance, on average, output volatility shocks explain between 77% and 85% of output volatility variance at the selected horizons. Similarly, inflation volatility shocks explain between 75% and 85% of inflation volatility variance. On the other hand, figures for the short-term rate and the money growth volatility are in the range 82% to 88% and 82% to 87%, respectively. Moreover, for the exchange rates figures are in the range 77% to 85%. In all the cases it is always the own volatility shock that explains the bulk of variability for the log volatility series. Finally, while some contribution to the explanation of macroeconomic volatility is provided by the exchange rate shocks, a much stronger role seems to be played by the macroeconomic shocks. In fact, on average the exchange rate volatility shocks explain only about 5% of macroeconomic volatility variance at all the forecasting horizons considered, while the average contribution of macroeconomic volatility shocks to exchange rate volatility variance is about 20%. Hence, a stronger short-term medium-term causality linkage from macroeconomic volatility to exchange rate volatility than the other way around is revealed by the FEVD analysis.

Conclusion

As pointed out by the empirical analysis, significant short- to medium-term linkages and trade-offs between macroeconomic and exchange rate volatility can be found for the G-7 countries, particularly involving output, inflation, and money growth volatility. While these linkages show bidirectional causality, macroeconomic volatility does seem to be a stronger driving force for exchange rate volatility than the other way around. The seminal views of Friedman (1953) on the case for flexible exchange rates seem to find support, from a medium-term perspective, with interesting implications for financial analysis. Since macroeconomic stability may be important to reduce excess exchange rates volatility, monitoring the making of economic policy may be relevant for predicting future regimes of low/high volatility, which may persist over time. Moreover, as systemic volatility cannot be eliminated, even in fixed exchange rate regimes, feedback effects should also be taken into account. Hence, while other factors than macroeconomic fundamentals may be important determinants of exchange rates volatility in the short- to medium-term, neglecting the impact of macroeconomic volatility may however be inappropriate. The finding is fully consistent with additional evidence available for the U.S. stock market [Beltratti and Morana (2006), Engle and Rangel (2008)], pointing therefore to a robust linkage between macroeconomic and financial markets volatility in general.

Many tasks in finance, such as option pricing, risk measurement, and optimal portfolio allocation do rely on good volatility forecasting models. The results of this study point to new directions for the construction of improved short- to medium-term volatility models. With a medium-term perspective, forecasting models conditioned to an information set containing not only their own historic volatility but also the history of key macroeconomic volatility series may lead to more accurate predictions of the overall level of future volatility [Engle and Rangel (2008)]. Furthermore, insofar as feedback effects between macroeconomic and financial markets volatility can be found, multi-period predictions could benefit from a multivariate framework, where interactions between the involved variables may be fully accounted for. The multivariate model proposed in this paper does provide a viable and effective framework suited to the task.

Some applications to conditional portfolio allocation, coherent with the results of the study, can also be mentioned. For example, both the conditional approaches of Brandt and Santa-Clara (2003) and Brandt et al. (2004) are directly related to the use of macroeconomic information for the estimation and prediction of optimal portfolio weights. More recently, Morana (2007c), still in the framework of conditional portfolio models, has proposed a simpler, yet effective, alternative approach to exploit macroeconomic information for ex-post predictions of the optimal portfolio weights, which are derived without explicit conditioning to macroeconomic information. While the advantages of the multivariate structural volatility modeling, discussed above, over standard univariate methodologies are clear-cut in principle, additional work is needed to provide complementary empirical evidence. We leave this issue for future work.
Medium-term macroeconomic determinants of exchange rate volatility

References

- Bai, J., and S. Ng, 2004, “A panic attack on unit roots and cointegration,” Econometrica, 72, 1027-1077
- Bauer, D., and A. Maynard, 2006, “Robust granger causality test in the VARX framework,” mimeo, University of Toronto
- Enders, W., and J. Lee, 2004, “Testing for a unit root with a non linear fourier function,” mimeo, University of Alabama
- Flood, R. P. and A. K. Rose, 1999, “Understanding exchange rate volatility without the coextravance of macroeconomics,” mimeo, University of California, Berkeley
- Gallant, R., 1984, “The fourier flexible form,” American Journal of Agricultural Economics, 66, 204-08
- Morana, C., 2008a, “A factor vector autoregressive estimation approach for long memory processes subject to structural breaks,” Universita’ del Piemonte Orientale, mimeo
- Morana, C., 2007a, “Multivariate modelling of long memory processes with common components,” Computational Statistics and Data Analysis, 52, 999-934
- Morana, C., 2007c, “Realized portfolio selection in the euro area,” mimeo, Universita’ del Piemonte Orientale
- Peskitt, D. S., 2005, “Properties of the sieve bootstrap for non-invertible and fractionally integrated processes,” mimeo, Manushen University
Appendix

The table reports the results of the medium-term principal components (PC) analysis carried out for each exchange rate on the break-free noise-free log-volatility for the relevant macroeconomic variables, i.e., real output growth rates (g), inflation rates (π), short-term nominal interest rates (s), nominal money growth rates (m), and nominal exchange rates returns for the €, the ¥, the £, and the Canadian $ against the U.S.$ (e). For each set the first row shows the fraction of the total variance explained by each PC ($i = 1, \ldots, 9$); the subsequent nine rows display the fraction of the variance of the individual series attributable to each PC.

<table>
<thead>
<tr>
<th>Currency</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
<th>PC6</th>
<th>PC7</th>
<th>PC8</th>
<th>PC9</th>
</tr>
</thead>
<tbody>
<tr>
<td>€/U.S.$</td>
<td>All</td>
<td>0.19</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.10</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>gUS</td>
<td>0.06</td>
<td>0.35</td>
<td>0.12</td>
<td>0.24</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>gEA</td>
<td>0.19</td>
<td>0.25</td>
<td>0.14</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
<td>0.21</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>πUS</td>
<td>0.13</td>
<td>0.04</td>
<td>0.40</td>
<td>0.01</td>
<td>0.20</td>
<td>0.08</td>
<td>0.30</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>πEA</td>
<td>0.36</td>
<td>0.04</td>
<td>0.31</td>
<td>0.01</td>
<td>0.08</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>sUS</td>
<td>0.29</td>
<td>0.21</td>
<td>0.02</td>
<td>0.07</td>
<td>0.04</td>
<td>0.26</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>sEA</td>
<td>0.25</td>
<td>0.00</td>
<td>0.18</td>
<td>0.03</td>
<td>0.39</td>
<td>0.00</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>mUS</td>
<td>0.12</td>
<td>0.03</td>
<td>0.13</td>
<td>0.36</td>
<td>0.02</td>
<td>0.24</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>mEA</td>
<td>0.26</td>
<td>0.06</td>
<td>0.00</td>
<td>0.36</td>
<td>0.09</td>
<td>0.00</td>
<td>0.32</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>eEA</td>
<td>0.03</td>
<td>0.49</td>
<td>0.02</td>
<td>0.10</td>
<td>0.07</td>
<td>0.14</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>¥/U.S.$</td>
<td>All</td>
<td>0.18</td>
<td>0.16</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>gUS</td>
<td>0.12</td>
<td>0.04</td>
<td>0.46</td>
<td>0.05</td>
<td>0.20</td>
<td>0.22</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>gJA</td>
<td>0.00</td>
<td>0.52</td>
<td>0.12</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.36</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>πUS</td>
<td>0.12</td>
<td>0.28</td>
<td>0.30</td>
<td>0.20</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>πJA</td>
<td>0.13</td>
<td>0.34</td>
<td>0.01</td>
<td>0.13</td>
<td>0.09</td>
<td>0.09</td>
<td>0.13</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>sUS</td>
<td>0.25</td>
<td>0.02</td>
<td>0.02</td>
<td>0.08</td>
<td>0.42</td>
<td>0.09</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>sJA</td>
<td>0.35</td>
<td>0.30</td>
<td>0.04</td>
<td>0.00</td>
<td>0.03</td>
<td>0.25</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>mUS</td>
<td>0.63</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.21</td>
<td>0.01</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>mJA</td>
<td>0.09</td>
<td>0.10</td>
<td>0.55</td>
<td>0.00</td>
<td>0.06</td>
<td>0.01</td>
<td>0.17</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>eJA</td>
<td>0.01</td>
<td>0.06</td>
<td>0.39</td>
<td>0.30</td>
<td>0.26</td>
<td>0.00</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>£/U.S.$</td>
<td>All</td>
<td>0.20</td>
<td>0.16</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>gUS</td>
<td>0.07</td>
<td>0.20</td>
<td>0.07</td>
<td>0.16</td>
<td>0.00</td>
<td>0.45</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>gUK</td>
<td>0.00</td>
<td>0.43</td>
<td>0.08</td>
<td>0.27</td>
<td>0.00</td>
<td>0.02</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>πUS</td>
<td>0.16</td>
<td>0.00</td>
<td>0.01</td>
<td>0.55</td>
<td>0.10</td>
<td>0.00</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>πUK</td>
<td>0.36</td>
<td>0.31</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>sUS</td>
<td>0.60</td>
<td>0.09</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>sUK</td>
<td>0.47</td>
<td>0.01</td>
<td>0.03</td>
<td>0.13</td>
<td>0.01</td>
<td>0.03</td>
<td>0.07</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>mUS</td>
<td>0.04</td>
<td>0.56</td>
<td>0.07</td>
<td>0.02</td>
<td>0.03</td>
<td>0.10</td>
<td>0.71</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>mUK</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.71</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>eUK</td>
<td>0.02</td>
<td>0.00</td>
<td>0.72</td>
<td>0.01</td>
<td>0.08</td>
<td>0.02</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>CA/US$</td>
<td>All</td>
<td>0.23</td>
<td>0.16</td>
<td>0.14</td>
<td>0.13</td>
<td>0.10</td>
<td>0.09</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>gUS</td>
<td>0.06</td>
<td>0.30</td>
<td>0.23</td>
<td>0.12</td>
<td>0.44</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>gCA</td>
<td>0.13</td>
<td>0.12</td>
<td>0.31</td>
<td>0.00</td>
<td>0.12</td>
<td>0.25</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>πUS</td>
<td>0.00</td>
<td>0.36</td>
<td>0.28</td>
<td>0.31</td>
<td>0.02</td>
<td>0.12</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>πCA</td>
<td>0.35</td>
<td>0.22</td>
<td>0.01</td>
<td>0.20</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>sUS</td>
<td>0.44</td>
<td>0.26</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>sCA</td>
<td>0.42</td>
<td>0.04</td>
<td>0.38</td>
<td>0.00</td>
<td>0.08</td>
<td>0.05</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>mUS</td>
<td>0.04</td>
<td>0.36</td>
<td>0.00</td>
<td>0.12</td>
<td>0.09</td>
<td>0.21</td>
<td>0.17</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>mCA</td>
<td>0.17</td>
<td>0.79</td>
<td>0.09</td>
<td>0.35</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>eCA</td>
<td>0.42</td>
<td>0.01</td>
<td>0.12</td>
<td>0.01</td>
<td>0.02</td>
<td>0.30</td>
<td>0.27</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Figure A1 - Principal components analysis (medium-term), bilateral exchange rates models
<table>
<thead>
<tr>
<th>Horizon (months)</th>
<th>qUS</th>
<th>πUS</th>
<th>sUS</th>
<th>mUS</th>
<th>all</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>88.71</td>
<td>175</td>
<td>3.31</td>
<td>3.05</td>
<td>96.83</td>
<td>3.17</td>
</tr>
<tr>
<td>24</td>
<td>78.95</td>
<td>3.58</td>
<td>7.41</td>
<td>4.00</td>
<td>93.93</td>
<td>6.07</td>
</tr>
<tr>
<td>6</td>
<td>6.71</td>
<td>83.32</td>
<td>3.22</td>
<td>4.30</td>
<td>95.45</td>
<td>4.55</td>
</tr>
<tr>
<td>24</td>
<td>1.77</td>
<td>3.94</td>
<td>88.80</td>
<td>2.10</td>
<td>96.61</td>
<td>3.39</td>
</tr>
<tr>
<td>6</td>
<td>2.03</td>
<td>6.55</td>
<td>87.75</td>
<td>1.09</td>
<td>96.81</td>
<td>3.19</td>
</tr>
<tr>
<td>24</td>
<td>3.09</td>
<td>1.44</td>
<td>2.15</td>
<td>89.60</td>
<td>96.29</td>
<td>3.71</td>
</tr>
<tr>
<td>6</td>
<td>4.32</td>
<td>3.10</td>
<td>3.67</td>
<td>85.01</td>
<td>96.10</td>
<td>3.90</td>
</tr>
<tr>
<td>24</td>
<td>80.68</td>
<td>12.03</td>
<td>3.21</td>
<td>2.82</td>
<td>98.73</td>
<td>1.27</td>
</tr>
<tr>
<td>6</td>
<td>70.60</td>
<td>15.84</td>
<td>4.03</td>
<td>4.22</td>
<td>94.69</td>
<td>5.31</td>
</tr>
<tr>
<td>24</td>
<td>5.60</td>
<td>80.95</td>
<td>3.96</td>
<td>6.25</td>
<td>96.75</td>
<td>3.25</td>
</tr>
<tr>
<td>6</td>
<td>6.17</td>
<td>72.35</td>
<td>5.21</td>
<td>9.89</td>
<td>93.63</td>
<td>6.37</td>
</tr>
<tr>
<td>24</td>
<td>2.47</td>
<td>1.07</td>
<td>89.07</td>
<td>3.56</td>
<td>96.77</td>
<td>3.83</td>
</tr>
<tr>
<td>6</td>
<td>4.92</td>
<td>1.55</td>
<td>81.09</td>
<td>6.02</td>
<td>93.57</td>
<td>6.43</td>
</tr>
<tr>
<td>24</td>
<td>2.81</td>
<td>4.47</td>
<td>2.23</td>
<td>87.40</td>
<td>96.91</td>
<td>3.09</td>
</tr>
<tr>
<td>6</td>
<td>4.66</td>
<td>7.34</td>
<td>4.13</td>
<td>79.04</td>
<td>95.17</td>
<td>4.83</td>
</tr>
<tr>
<td>24</td>
<td>87.53</td>
<td>4.65</td>
<td>3.82</td>
<td>2.03</td>
<td>98.03</td>
<td>1.97</td>
</tr>
<tr>
<td>6</td>
<td>78.71</td>
<td>6.38</td>
<td>719</td>
<td>3.36</td>
<td>95.43</td>
<td>4.57</td>
</tr>
<tr>
<td>24</td>
<td>1.88</td>
<td>84.45</td>
<td>5.56</td>
<td>3.78</td>
<td>95.66</td>
<td>4.34</td>
</tr>
<tr>
<td>6</td>
<td>1.06</td>
<td>77.65</td>
<td>12.48</td>
<td>5.86</td>
<td>97.06</td>
<td>2.94</td>
</tr>
<tr>
<td>24</td>
<td>6.58</td>
<td>1.35</td>
<td>88.09</td>
<td>1.59</td>
<td>97.61</td>
<td>2.39</td>
</tr>
<tr>
<td>6</td>
<td>9.91</td>
<td>3.85</td>
<td>82.54</td>
<td>1.85</td>
<td>98.15</td>
<td>1.85</td>
</tr>
<tr>
<td>24</td>
<td>2.50</td>
<td>7.49</td>
<td>2.87</td>
<td>80.06</td>
<td>92.93</td>
<td>7.07</td>
</tr>
<tr>
<td>6</td>
<td>3.08</td>
<td>8.66</td>
<td>5.11</td>
<td>73.41</td>
<td>90.26</td>
<td>9.74</td>
</tr>
<tr>
<td>24</td>
<td>84.66</td>
<td>3.49</td>
<td>4.18</td>
<td>4.84</td>
<td>97.17</td>
<td>2.83</td>
</tr>
<tr>
<td>6</td>
<td>80.62</td>
<td>3.93</td>
<td>6.57</td>
<td>6.39</td>
<td>97.51</td>
<td>2.49</td>
</tr>
<tr>
<td>24</td>
<td>1.53</td>
<td>80.91</td>
<td>8.37</td>
<td>0.88</td>
<td>91.69</td>
<td>8.31</td>
</tr>
<tr>
<td>6</td>
<td>2.66</td>
<td>59.71</td>
<td>10.58</td>
<td>2.13</td>
<td>75.08</td>
<td>24.92</td>
</tr>
<tr>
<td>24</td>
<td>2.97</td>
<td>2.64</td>
<td>88.80</td>
<td>0.17</td>
<td>94.59</td>
<td>5.41</td>
</tr>
<tr>
<td>6</td>
<td>5.35</td>
<td>3.41</td>
<td>80.81</td>
<td>0.19</td>
<td>89.76</td>
<td>10.24</td>
</tr>
<tr>
<td>24</td>
<td>2.67</td>
<td>1.05</td>
<td>4.49</td>
<td>90.03</td>
<td>96.23</td>
<td>1.77</td>
</tr>
<tr>
<td>6</td>
<td>3.93</td>
<td>2.58</td>
<td>5.66</td>
<td>86.07</td>
<td>98.24</td>
<td>1.76</td>
</tr>
<tr>
<td>24</td>
<td>85.56</td>
<td>5.66</td>
<td>3.69</td>
<td>2.51</td>
<td>97.43</td>
<td>2.57</td>
</tr>
<tr>
<td>6</td>
<td>77.29</td>
<td>9.67</td>
<td>7.59</td>
<td>1.33</td>
<td>95.87</td>
<td>4.13</td>
</tr>
<tr>
<td>24</td>
<td>2.16</td>
<td>90.44</td>
<td>4.49</td>
<td>2.05</td>
<td>99.14</td>
<td>0.86</td>
</tr>
<tr>
<td>6</td>
<td>3.74</td>
<td>83.12</td>
<td>7.72</td>
<td>3.11</td>
<td>97.69</td>
<td>2.31</td>
</tr>
<tr>
<td>24</td>
<td>2.69</td>
<td>4.27</td>
<td>86.19</td>
<td>3.25</td>
<td>96.41</td>
<td>3.59</td>
</tr>
<tr>
<td>6</td>
<td>4.37</td>
<td>5.61</td>
<td>78.03</td>
<td>5.11</td>
<td>93.13</td>
<td>6.87</td>
</tr>
<tr>
<td>24</td>
<td>3.70</td>
<td>0.63</td>
<td>3.32</td>
<td>88.25</td>
<td>95.91</td>
<td>4.09</td>
</tr>
<tr>
<td>6</td>
<td>4.84</td>
<td>1.06</td>
<td>2.51</td>
<td>85.13</td>
<td>93.54</td>
<td>6.46</td>
</tr>
<tr>
<td>24</td>
<td>8.47</td>
<td>4.65</td>
<td>1.87</td>
<td>3.63</td>
<td>18.91</td>
<td>81.09</td>
</tr>
<tr>
<td>6</td>
<td>8.41</td>
<td>713</td>
<td>4.55</td>
<td>2.32</td>
<td>22.40</td>
<td>77.60</td>
</tr>
<tr>
<td>24</td>
<td>6.54</td>
<td>2.56</td>
<td>175</td>
<td>3.21</td>
<td>14.07</td>
<td>85.93</td>
</tr>
<tr>
<td>6</td>
<td>10.24</td>
<td>6.17</td>
<td>1.97</td>
<td>5.57</td>
<td>23.96</td>
<td>76.04</td>
</tr>
<tr>
<td>24</td>
<td>1.58</td>
<td>1.90</td>
<td>6.85</td>
<td>2.09</td>
<td>12.41</td>
<td>87.59</td>
</tr>
<tr>
<td>6</td>
<td>178</td>
<td>193</td>
<td>12.49</td>
<td>4.45</td>
<td>20.65</td>
<td>79.35</td>
</tr>
<tr>
<td>24</td>
<td>5.19</td>
<td>1.09</td>
<td>7.12</td>
<td>2.87</td>
<td>16.26</td>
<td>83.74</td>
</tr>
<tr>
<td>6</td>
<td>916</td>
<td>2.86</td>
<td>11.04</td>
<td>3.88</td>
<td>26.94</td>
<td>73.06</td>
</tr>
</tbody>
</table>

The table reports for each log volatility variable, real output growth rate (q), inflation rate (π), short-term nominal interest rate (s), nominal money growth rate (m) for the five countries investigated, and nominal exchange rate returns for the €, the Y, the £, and the Canadian dollar against the U.S.$ (e), the median forecast error variance decomposition at the six-month and two-year horizons obtained from the structural VMA representation of the FI-FVAR model, following the thick modeling estimation strategy. For each log volatility variable the table shows the percentage of forecast error variance attributable to each macroeconomic shock (output: q; inflation: π; short rate: s; and money: m) together with their sum (all). The last column reports the percentage of the forecast error variance attributable to all the exchange rate shocks (all).

Figure A2 - Forecast error variance decomposition
Risk adjustment of bank stocks in the face of terror

Dirk Schiereck
Full Professor, Faculty of Business Administration, Economics & Law, Tech University Darmstadt

Felix Zeidler
European Business School, International University Schloß Reichartshausen

Abstract
Our paper analyzes the dynamics of firm level (systematic) risk surrounding three terrorist attacks in New York, Madrid, and London. Overall, we find that the adjustment of risk is extensively consistent with the assumption of efficient capital markets. Analyzing 334 of the largest U.S. and European financial institutions we find that the attack on September 11th had a strong short- and medium-term effect on the riskiness of insurance companies which is possibly due to the expected loss exposure of insurance companies. Subsequent to 9/11, portfolio betas and volatility for U.S. and European insuranc-es gradually decreased, which possibly reflects the gradual information diffusion concerning the exact loss exposures and business models of insurance companies. On the contrary, we do not find any significant positive risk shifts subsequent to the terror attacks in Madrid and London. This may be explained by the fact that both attacks did not increase uncertainty regarding the political and economic situation since the inherent possibility for political and economically instability had been immediately priced after 9/11.
The hypothesis of efficient capital markets is one of the cornerstones of modern finance theory (Fama (1970)). Empirical research mostly focuses on either weak-form or semi-strong-form tests of market efficiency. In other words, it addresses one of the following two questions: (1) Do past returns predict future returns? (2) How quickly do security prices adjust to announcements of public information? Tests of market efficiency always require the assumption of an appropriate pricing model and are hence joint tests of market efficiency and asset pricing models (Fama (1998)). In the context of semi-strong-form tests of market efficiency, also commonly referred to as event studies, this assumption is considered to be least critical [Brown and Warner (1985)]. Consequently, event studies have evolved to become one of the most widely used methodologies of finance and corporate finance in particular and as Fama (1991) notes “are the cleanest evidence we have on efficiency. With few exceptions, the evidence is supportive” (p. 1602). A myriad of event studies address various finance issues and hence do not only provide new evidence on central issues of corporate finance, but also for the hypothesis that stock prices adjust in a rather timely manner to new information [Mandelker (1974), Dodd and Warner (1983), Asquith and Mullins (1986), Korwar and Masulis (1986), Kaplan (1989)].

While there is agreement that new information leads to the (efficient) adjustment of stock prices, remarkably little is known regarding the adjustment of (systematic) risk. New information about changes in the micro- as well as macroeconomic environment should naturally lead to adjustments of betas [Bos and Newbold (1984), Campbell and Mei (1993)]. The riskiness of a firm’s cash flows likely vary over time as different phases of the business cycle induce risks that are distinct for different types of firms. For example, phases of economic downturns may increase a stock’s beta more for firms that are in poor shape, since financial leverage may increase sharply [Jagannathan and Wang (1996)]. Hence, in an efficient market, any announcements of information should also induce a repricing of risk. Although various researchers have empirically examined the time-varying nature of risk (Lettau and Ludvigson (2001), Santos and Veronesi (2005), Lewellen and Nagel (2006)), no knowledge is available about the adjustment process of risk to new information. In this paper we fill this research gap by analyzing the dynamics of risk to new information. In particular, we are interested in two issues: (1) do we observe an adjustment of risk to new information? (2) How long does this adjustment take?

To determine whether the adjustment of risk to new information is consistent under the notion of efficient capital markets, we analyze three unexpected catastrophic events. In particular, we analyze the terrorist attacks in the U.S. (also referred to as 9/11), Spain (also referred to as 3/11), and the U.K. (also referred to as 7/7). We choose these three attacks because firstly, the terrorist attacks, and in particular the attacks of September 11th, had a large emotional and material impact and were widely regarded as ‘market wide shocks,’ which certainly have changed the micro- and macroeconomic environments of most developed capital markets. Theoretically, this justifies a repricing of risk. Secondly, all three attacks were unexpected and hence enable us to isolate the ‘catastrophic’ effect from other risk factors. Being able to isolate this effect is particularly important since in contrast to event studies no model regarding the expected risk exists. Thirdly, all three attacks were based on the same ideological and political reasoning. Hence they can be viewed as a sequence of events which are closely interconnected. This allows us to investigate the speed of risk adjustment.

To this end, we analyze 334 financial institutions from the U.S. and Europe which we further subdivide into a sample of banks, insurance, and other financial institutions. We choose this particular industry not only due to its high contribution to the overall financial stability and hence its overall economic importance, but, moreover, because it was directly exposed to the material losses of the terrorist attacks. We analyze the effects on systematic as well as total risk and furthermore investigate changes in return correlations among share prices of financial institutions. We find strong evidence for a large immediate and a moderate medium-term risk increase subsequent to the terrorist attack on September 11th. This risk increase is most significant for insurance companies. In contrast, no major risk effects are observable for the terrorist attack in Madrid and London. Findings suggest that risk levels almost immediately adjusted to the new levels of uncertainty regarding the economic and political situation. After 9/11 this uncertainty as well as the probability of further attacks was priced and hence risk levels did not adjust subsequent to the attacks in Madrid and London as they – while being tragic and severe – did not signal additional political or economic tensions. Our findings are consistent with a notion of efficient capital markets. Furthermore, we show that the assumption of constant risk (beta) in the context of analyzing capital market responses to catastrophic events seriously biases results. In particular, when the overall market reaction is very large and negative, as was the case in 9/11, one significantly overestimates the negative wealth effects. In a last analysis we find that systemic risk (measured as the correlation of share price returns of financial institutions) has increased over time but that this increase cannot be attributable to the terrorist attacks.

Related literature
Numerous studies analyze the valuation effects of unexpected and catastrophic events. Most studies tend to concentrate on natural disasters [Shelor et al. (1992), Aiuppa et al. (1993)] and terrorist attacks [Cummins and Lewis (2003), Carter and Simkins (2004)] and find that share price returns of insurance companies are in particular sensitive to such events and that this sensitivity depends on the level of loss exposure. Research regarding the risk effects of
large catastrophic events is scarce. However, the dramatic terrorist attacks of 9/11 have caused some to explicitly analyze their effect on market risk. Richman et al. (2005) analyze the short-term wealth effects and the long-term risk effects of 9/11 on several international market indices compared to the world market. Applying a linear regression model and controlling for currency risk and several different markets, they show that no long-term effect on systematic risk can be observed. For most of the large economies (i.e., U.S., Germany, and Japan) they find no significant change in betas between 150 days prior to and 150 days subsequent to the terrorist attacks. Choudhry (2005) also analyzes the risk effects of 9/11. His analysis significantly differs from Richman et al. (2005). Firstly, he concentrates on individual firm level systematic risk and not the systematic risk of an entire market. Secondly, he models systematic risk as a time-varying risk factor and hence explicitly accounts for the widely documented fluctuation in firm level betas. Using a bivariate MA-GARCH model, he analyses various large arbitrarily chosen U.S. companies from different industries and shows that neither company experienced an increase in systematic risk subsequent to the events of 9/11.

The literature review shows that the relation between risk and a catastrophic event has been analyzed before. Yet, our analysis is distinct in several ways. We are not so much interested in the overall risk effect to the market or a broad diversified portfolio of firms. As noted by Jagannathan and Wang (1996), fluctuations in systematic risk should naturally differ across industries. Hence, an analysis of the risk adjustment to new information is not possible without controlling for certain industries as fluctuation in risk among industries might offset each other. Also, we are interested in the speed of adjustment. In an efficient capital market, this adjustment should be observable immediately. Hence, we analyze the effects of three closely (albeit not timely) connected events which enables us to document how the risk of an immediate increase in the likelihood for political instability is priced.

Sample and research methods

Event definition and sample construction

The three terrorist attacks in New York (9/11/2001 in the following referred to as 9/11), Madrid (3/11/2004 in the following referred to as 3/11), and London (7/7/2005 in the following referred to as 7/7) form the events analyzed within this study. While all three attacks differ in magnitude and severity they have in common the association with the same political/religious motivation. We, therefore, reasonably assume that the attacks are a sequence of events having the same political origin. Our sample consists of the largest U.S. and European financial institutions. The sample was constructed using the S&P 500 Financials (U.S.) and the DJ Stoxx 600 Financials (Europe) indices which consist of the largest financial institutions within the particular geographic region. We determine all constituents for each month in the period from 2000 to 2007 to derive a historical constituent list of financial institutions that is unaffected by any potential survivorship bias. This is particularly important when analyzing events which have the potential to significantly impact the conditions within the industry and hence might cause a number of firms to default or be targets of takeovers. The described procedure yields a total of 378 (U.S.: 113, Europe 265) financial institutions which had been or still are members of one of the two financial indices at any month in the period from 2000 to 2007. We exclude all firms where return data is unavailable for the one year period surrounding the attack and/or where trading is infrequent. All return data is from Thomson Datastream. For our three events this yields a total of 310 financial firms for the terrorist attacks on 9/11, 324 firms for the terrorist attack on 3/11, and 334 firms for the terrorist attacks on 7/7. For our analysis we furthermore subdivide our sample by firm type. Based on the Worldscope General Industry Classification, we split our sample into banks, insurances, and other financials. As market indices we use the Datastream World, U.S., and European market indices. Figure 1 gives an overview of our sample with respect to firm country and firm type. U.S. firms constitute about one third of our sample. The bulk of the firms in our European sample are from U.K., Italy, Germany, and France. Concerning firm type, banks make up 46% of our sample, whereas insurances and other financials constitute 25% and 29% of the total, respectively.

 Measurements of systematic and total risk

To estimate the dynamics in systematic firm risk we use the model of Jostova and Philippov (2005), which assumes a general mean-reverting stochastic beta process and uses Bayesian statistics to estimate the underlying parameters. We choose to apply this model...
(hereafter referred to as the SBETA model) because it is particularly suitable for our analysis. As noted by Jostova and Philipov (2005), the model combines a stochastic component with time-variation in the beta process. Due to this generality existing beta models are included as special cases. Also, contrary to prior models, which restricted the kurtosis in stock price returns to be below empirically observed levels, the SBETA model explicitly accounts for excess kurtosis in stock price returns. Most importantly, however, the model explicitly captures the empirically observed persistence (or clustering) of beta and is hence very suitable to account for ‘shocks’ in betas. Formally, the SBETA model is specified as:

\[
\begin{align*}
\alpha_{p} & = \beta_{p}^{t} \beta_{m}^{t} + \epsilon_{p,t}^{\alpha}, \\
\beta_{p} & = \alpha_{p} + \delta_{p}(\beta_{p,t+1} - \alpha_{p}) + \epsilon_{p,t}^{\beta}, \\
(\alpha_{p}, \beta_{p}, \sigma_{\epsilon_{p}}, \sigma_{\beta}, \sigma_{\beta}^{2}) & \sim p(\alpha, \beta, \sigma_{\epsilon}, \sigma_{\beta}, \sigma_{\beta}^{2}),
\end{align*}
\]

where \(\epsilon_{p,t}\) and \(\epsilon_{m,t}\) are the firm’s and market’s returns, \(\beta_{p}\) is the firm’s variability to market movements, \(\alpha_{p}\), \(\delta_{p}\), and \(\sigma_{\beta}^{2}\) are the unconditional mean, clustering, and conditional volatility of firm p’s beta, \(\sigma_{\epsilon}^{2}\) is firm p’s idiosyncratic return volatility, and \(p(\alpha, \beta, \sigma_{\epsilon}, \sigma_{\beta}, \sigma_{\beta}^{2})\) is the joint distribution of the model parameters. \(\epsilon_{p,t}\) and \(\epsilon_{m,t}\) are the stochastic components of excess return and beta, respectively.

As proposed by Jostova and Philipov (2005) the estimators converge in less than 200 iterations. However, as noted by Jostova and Philipov (2005) the model parameters are estimated using Bayesian methods. Each parameter is estimated using the Gibbs sampler based on 600 draws after discarding the first 300 iterations. As noted by Jostova and Philipov (2005) the models converge in less than 200 iterations. However, iterations are set to 600 to further increase the probability of convergence. Refer to the appendix for details on the quality of our computational SBETA model implementation and for the posterior density functions as derived by Jostova and Philipov (2005). We estimate the time-varying and stochastic beta over a time span of 150 days prior and subsequent to the terrorist attacks using daily returns. Using daily returns enables us to capture an immediate adjustment of risk measures. For the purpose of estimating the time-varying dynamics of total risk we use the widely applied generalized autoregressive conditional heteroscedasticity model (hereafter referred to as GARCH) as proposed by Bollerslev (1986). Similar to the analysis of systematic risk, we estimate total risk (i.e., volatility) during the 300 days surrounding the terrorist attacks.

Results

Descriptive

We begin our analysis by estimating the effects of terrorist attacks on the systematic risk of individual country market indices. We analyze all countries of origin of our sample firms. In conducting this analysis we want to find out how risk effects differed between countries and between the three events in general. We use a methodology which is very similar to the one applied by Richman et al. (2005). Our model takes the following form:

\[
R_{i,t} = \alpha_{i} + \beta_{i}R_{M,t} + \beta_{i}^{\text{FX}}R_{FX,t} + \lambda_{i}P_{t}R_{Mt} + \varepsilon_{i,t} (2),
\]

where \(R_{i,t}\) is the U.S. dollar return on the Datastream stock index of country i on day t, \(R_{M,t}\) is the U.S. dollar return of the Datastream World Index on day t, \(R_{FX,t}\) is the FED’s broad-based nominal foreign exchange index return on day t, and \(P_{t}\) is a dummy variable taking a value of 1 on the event return on the Datastream stock index of country i on day t. \(\lambda_{i}\) is the joint distribution of the model parameters.

\[
\begin{align*}
\alpha_{i} & = \beta_{i}^{t} \beta_{m}^{t} + \epsilon_{i,t}^{\alpha}, \\
\beta_{i} & = \alpha_{i} + \delta_{i}(\beta_{i,t+1} - \alpha_{i}) + \epsilon_{i,t}^{\beta}, \\
(\alpha_{i}, \beta_{i}, \sigma_{\epsilon_{i}}, \sigma_{\beta}, \sigma_{\beta}^{2}) & \sim p(\alpha, \beta, \sigma_{\epsilon}, \sigma_{\beta}, \sigma_{\beta}^{2}),
\end{align*}
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>(\beta_{i})</th>
<th>(\lambda_{i})</th>
<th>(\alpha_{i})</th>
<th>(\varepsilon_{i,t})</th>
<th>(R_{t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.001</td>
<td>0.158</td>
<td>0.003</td>
<td>-0.236</td>
<td>0.373</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.000</td>
<td>0.217</td>
<td>0.007</td>
<td>-1.813</td>
<td>0.455</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.000</td>
<td>0.269</td>
<td>0.010</td>
<td>-1.940</td>
<td>0.253</td>
</tr>
<tr>
<td>Finland</td>
<td>-0.001</td>
<td>1.877</td>
<td>-0.284</td>
<td>-0.893</td>
<td>-0.446</td>
</tr>
<tr>
<td>France</td>
<td>0.000</td>
<td>0.825</td>
<td>0.009</td>
<td>-1.157</td>
<td>0.286</td>
</tr>
<tr>
<td>Germany</td>
<td>0.000</td>
<td>0.343</td>
<td>0.065</td>
<td>-1.927</td>
<td>0.180</td>
</tr>
<tr>
<td>Greece</td>
<td>0.000</td>
<td>0.499</td>
<td>0.028</td>
<td>-2.515</td>
<td>0.129</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.000</td>
<td>0.377</td>
<td>0.069</td>
<td>-1.240</td>
<td>0.238</td>
</tr>
<tr>
<td>Italy</td>
<td>0.000</td>
<td>0.649</td>
<td>0.063</td>
<td>-1.176</td>
<td>0.593</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.000</td>
<td>0.622</td>
<td>0.007</td>
<td>-1.087</td>
<td>0.457</td>
</tr>
<tr>
<td>Norway</td>
<td>0.000</td>
<td>0.498</td>
<td>0.007</td>
<td>-1.172</td>
<td>0.079</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.000</td>
<td>0.370</td>
<td>-0.057</td>
<td>-1.953</td>
<td>0.065</td>
</tr>
<tr>
<td>Spain</td>
<td>0.000</td>
<td>0.795</td>
<td>-0.077</td>
<td>-1.445</td>
<td>0.171</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.000</td>
<td>1.046</td>
<td>-0.011</td>
<td>-1.083</td>
<td>0.283</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.000</td>
<td>0.603</td>
<td>0.040</td>
<td>-1.264</td>
<td>0.093</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.000</td>
<td>0.726</td>
<td>0.057</td>
<td>-0.492</td>
<td>0.121</td>
</tr>
<tr>
<td>U.S.</td>
<td>0.000</td>
<td>1.371</td>
<td>-0.038</td>
<td>-1.083</td>
<td>0.442</td>
</tr>
</tbody>
</table>

Panel A – U.S. 9/11

Panel B – Spain 3/11

Panel C – U.K. 7/7

Figure 2 – Long-term risk reaction after terrorist attack
The event. As the event we define the trading day of the terrorist attack (i.e., 9/11, 3/11, and 7/7). Each regression model is estimated using 300 trading days surrounding the event day. We include the lagged market return to control for possible thin trading in some indices. The exchange rate index is included to account for exchange rate changes subsequent to the terrorist attacks which were induced by different monetary policies conducted by some regions. The variable of main interest is λ_i which measures the change in beta between the period 150 days prior to the terrorist attack and 150 days subsequent to the attack. A positive and significant coefficient would indicate a significant long-term risk effect within the particular country.

Figure 2 presents the result of our analysis. We show regression result for each country and for each event (Panel A to C). Results for 9/11 and 7/7 are very similar to the ones documented by Richman et al. (2005). We find no systematic positive long-term risk effect. For example, while for Germany no significant effect can be observed, a significant and negative coefficient is documented for the U.S. market. As Richman et al. (2005) argue, these findings point in the direction of “resilience, flexibility, and robustness exhibited by the international financial markets” (p. 955). To the contrary, the attacks in Madrid on 3/11 did not result in any significant coefficients except for Austria. This suggests that the impact of the 9/11 and the 7/7 attacks were larger than for the 3/11 attack. Since it is impossible to control for any possible factor determining the systematic risk within an economy, the observed coefficients might not entirely be attributed to the event itself, but to changes in macroeconomic conditions thereafter. However, this initial analysis shows that differences between the attacks and between specific countries exist. In the following we present our firm level analysis.

Analysis of systematic risk

Univariate analysis

We analyze the risk adjustment process to new and unexpected information. We investigate whether the repricing of risk is consistent under the hypothesis of efficient capital markets. Moreover, from an investor perspective knowledge about the dynamics of systematic risk is crucial to ensure rational investment behavior and effective hedging. The standard CAPM assumes constant systematic risk, an assumption which has been empirically shown to be at least questionable. Empirical research documents that deviating from the assumption of constant systematic risk helps to explain many market anomalies. For example, Avramov and Chordia (2006) show that the empirically documented book-to-market and size effect may be the consequence of fluctuations in systematic risk. We report SBETA estimates for banks, insurances, and other financials for the period of 300 days surrounding each of the three terrorist attacks. Each SBETA can be interpreted as a portfolio beta resembled by an equally-weighted average of individual SBETA time-series per firm. For example the SBETA estimate for insurance companies surrounding the 9/11 event is calculated as an equally-weighted average of all individual U.S. and European insurance companies SBETA estimations).

We find that an equally weighted portfolio of banks, insurances, and other financials indeed has a highly dynamic beta. For all three events the average beta fluctuates between 0.5 and 1.2 and all three firm types have betas which are very similar in absolute value. We also find a slight increase in betas over time, because the average beta increases over the three events. Regarding the impact of the terrorist attacks on the beta of the financial firm portfolios we find a very mixed picture. On 9/11 each of the three portfolio betas increased immediately. However, the increase is particularly strong and clearly distinguishable only for the portfolio of insurance companies. The portfolio of insurance companies experiences the highest absolute beta level in the entire observation period immediately after 9/11. In the 50 trading days following the terrorist attack the beta gradually decreases, however, remaining on an absolute level which is above the pre-attack level. These observations suggest that the dramatic and tragic events on September 11th had the strongest immediate impact on the insurance business. This is not surprising as the insurance business was most exposed to immediate material losses caused by the terrorist attack. The adjustment of risk appears consistent with the efficient market hypothesis. However, the gradual decrease in insurance beta suggests an over-reaction in risk adjustment. It may be explained by the fact that initially knowledge about actual loss exposures were not available and hence the market initially interpreted all insurances as equally exposed. New information regarding which insurance companies were actually exposed to losses and which were not only gradually entered the market. Unfortunately, we do not posses information regarding the actual exposure per firm and hence are not able to control for the relationship between loss exposure and risk dynamics. Intuitively, we would expect, however, that insurances with the lowest exposure had the strongest gradual decrease subsequent to the attacks. The reasoning behind this is the following: the terror attacks did not only increase the probability and awareness of higher political and economical tensions in general, they also suggested a risk increase in (or higher costs for) the overall business model of terrorism insurance [Cummins and Lewis (2003)]. Initially this increase in risk was priced for all insurance companies. Subsequent to the terrorist attack, however, knowledge regarding which insurance company actually operates in this business segment gradually entered the market and hence risk was repriced.

Contrarily, the portfolio betas of all three subsamples are not significantly affected by the terrorist attacks in Madrid and London. Fluctuations immediately after the terrorist attacks are indistinguishable from other movements. A long-term drift is also not apparent. The subsequent terrorist attacks in Madrid and London
were less severe in material damage (albeit not less dramatic and tragic). However, the risk increase on 9/11 did not only reflect a change in microeconomic factors, such as the business environment, but also an increased likelihood for political and economical instability overall which was priced immediately. The terror attacks in Madrid and London were based on the same political and ideological reasons as the attacks of 9/11. Hence, they did not increase the likelihood of instability and the need to reappraise risk levels any further. This finding strongly supports the efficient market hypothesis and suggests that a repricing of risk is immediate and does correctly reflect the new level of information.

In our preceding analysis we do not distinguish between geographic regions. However, as the terrorist attacks occurred in different parts of the world it is important to analyze whether risk dynamics differed between U.S. and European firms. We, therefore, segregate our initial sample into two, with one being firms that are headquartered in the U.S. and the other being Europeans. We then analyze each terror attack separately for the two geographical sub samples.

When we analyze the risk dynamics surrounding each of the three terror attacks for financial firms which are headquartered in the U.S, we find that portfolio betas fluctuate over time. As in our previous analysis, a general trend for an increase in beta over time is also apparent for U.S. firms. Portfolio betas of U.S. firms fluctuate more than betas of the entire sample. Reasons for this could either be the fact that U.S. firms are more sensitive to changes in factor loadings or that the number of firms within the portfolio was smaller, which naturally leads to higher fluctuations. We also find that betas fluctuate most in the period preceding the attacks in the U.S. Systematic risk of banks ranges from about 0.4 to 1.2 in the 150 day period prior to the attack. This certainly reflects the economic conditions that were prevalent at the time, which were quite unstable as a result of the bursting of the dot.com bubble. Similar to our previous findings, we only observe significant risk shifts after the attacks in the U.S. In particular, we observe that systematic risk of the insurance portfolio increases sharply and gradually decreases thereafter. While the immediate increase in betas for banks and other financials is indistinguishable from other fluctuations, systematic risk in the medium-term appears to be positively impacted. In particular, the bank beta is on average higher during the 150-day period subsequent to the attack. Similar to our previous findings, risk changes cannot be observed subsequent to the terror attacks in Spain and the U.K.

Our results regarding European financial institutions are very similar to our preceding findings. We again observe that only the insurance portfolio beta seems to immediately and sharply increase after the 9/11 attacks. This is not surprising as the large insurance companies in Europe can be considered to be global firms. Hence, the risk shift to them was just as large as for U.S. insurers, since, as one would expect, they were equally exposed to material losses. In contrast to our findings for U.S. firms, however, we do not find a medium-term increase for the portfolios of banks and other financials. This suggests that the increased uncertainty regarding the political and economic situation had a larger impact on U.S. firms. Also, significant risk dynamics surrounding the subsequent two terror attacks cannot be observed. Fluctuations immediately following the terror attacks appear indistinguishable from other fluctuations. In total, risk dynamics across geographic regions are very similar, which suggests that capital markets in the U.S. and Europe are highly integrated and interconnected. We find that the attack on September 11th had a strong and positive short-term effect on insurance companies from both the U.S. and Europe. Subsequent to 9/11, portfolio betas for U.S. and European insurances gradually decreased, which possibly reflects the gradual information diffusion concerning the exact loss exposures and business models of insurance companies, i.e., betas of insurances which are not actively insuring terrorism loss experienced a decrease in betas. Furthermore, U.S. banks and other financial institutions experienced a positive medium-term effect. This effect cannot be observed for European firms. Subsequent to the attacks in Spain and the U.K., we do not observe any significant and systematic risk shifts. This can be explained by the fact that both attacks did not increase uncertainty regarding the political and economic situation since the inherent possibility for political and economically instability had been immediately priced after 9/11 already.

Regression analysis

In the next step, we control for the robustness of our results by conducting a linear regression analysis. In particular, we estimate a regression model which controls for the short- and medium-term risk effect of each terror attack. To this end, we estimate the following regression model for each firm: \[\text{SBETA}_{i,t} = \alpha_i + \beta_i \text{ST}_t + \lambda_i \text{LT}_t + \epsilon_{i,t} \] (3), where \(\text{SBETA}_{i,t} \) is the daily SBETA estimate for firm \(i \) on day \(t \), \(\text{ST}_t \) is a dummy variable taking a value of 1 on the event day and the two trading days thereafter and 0 otherwise, and \(\text{LT}_t \) is a dummy variable taking a value of 1 in the entire 150 trading days after the event and 0 otherwise. A positive and significant \(\beta \) coefficient would indicate a positive short-term risk effect whereas as positive and significant \(\lambda \) coefficient would indicate a positive medium-term risk effect. We estimate the regression model for each firm within our sample using the SBETA time-series of 150 days prior and subsequent to each terror attack. We then aggregate our regression results per firm type and geographic region, i.e., for banks, insurances, and other financials, and for U.S. and Europe. For example for the subsample of U.S. banks, we aggregate regression results by calculating the equally-weighted mean of individual regression coefficients [Loughran and Ritter (1995)].

2 Note that the entire market portfolio should theoretically have a beta of 1.
Risk adjustment of bank stocks in the face of terror

Figure 3 reports results of our regression analysis. The regression results strongly support our previous findings. For our total sample, regression results yield exactly the same findings as discussed above. Both, a positive and significant β coefficient and a positive and significant λ coefficient can be observed for insurance companies for the 9/11 terror attack. No short- or long-term effects on risk can be observed for banks and financial institutions, however. For the two terror attacks in Spain and U.K. no significant risk effects were observed for banks, insurances, or other financial institutions.

Also in line with our previous findings, all U.S. financial institutions experienced a significant medium-term drift in systematic risk. The λ coefficient is positive and significant for U.S. banks, insurances, and other financials. For the subsample of European financials, we only observe a positive and significant short- and medium-term risk shift for insurances. Remarkably, we find a negative and significant medium-term risk shift for U.S. banks after the terror attack in Spain and for U.S. insurances after the terror attacks in the U.K.

The shift is rather small, which is possibly the reason why we did not observe a positive and significant short- and medium-term risk shift for insurances. For the subsample of European financials, we observe a significant medium-term drift in systematic risk. The shift is rather small, which is possibly the reason why we did not observe such patterns in our previous analysis. There are two distinct possible reasons for these findings. The attacks in the U.S. had suddenly created awareness of the probability of large and severe terrorist attacks all over the western industrialized world. The likelihood for further terror attacks of similar magnitude increased sharply. This increased probability was immediately priced and risk increased. After the attacks in Madrid and London the world realized (or still hopes) that terror attacks of the dimensions that took place in U.S. were less likely than expected and consequently risk decreased. For the case of insurance companies another possible reason could stem from the ‘gaining from loss’ hypothesis [Shelor et al. (1992)]. Subsequent to the attacks of September 11th, insurance companies may have faced an increase in demand for terrorism insurance. Consequently insurers gained due to the less then expected material loss caused by the terrorist attacks in Spain and the U.K.

Implications for event study methodology

Previous results are important from an investor or portfolio management perspective and show that the risk adjustment to new information is strongly consistent with the notion of efficient capital markets. In the following we want to analyze how risk shifts caused by the terrorist attacks might influence results from studies analyzing the valuation consequences of such market shocks. It is commonly accepted that the assumption of constant risk in the context of event studies does not systematically bias results. Our previous findings suggest that this assumption in the context of market wide shocks is at least questionable. In order to test how the assumption of constant risk influences results of prior studies we conduct standard event study analysis [Brown and Warner (1985)] using OLS beta coefficients and then compare these results to our analysis using SBETA estimates as the risk adjustment factor. We do not attempt to discuss differences of the two approaches in detail, but instead want to emphasize that the assumption of con-

<table>
<thead>
<tr>
<th>Average parameter values</th>
<th>USA 9/11</th>
<th>Spain 3/11</th>
<th>U.K. 7/7</th>
<th>Number of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td>0.658</td>
<td>0.007</td>
<td>0.034</td>
<td>142</td>
</tr>
<tr>
<td>Insurance</td>
<td>0.630</td>
<td>0.023</td>
<td>0.037</td>
<td>192</td>
</tr>
<tr>
<td>Other financials</td>
<td>0.632</td>
<td>0.085</td>
<td>0.098</td>
<td>102</td>
</tr>
<tr>
<td>U.S. financials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td>0.665</td>
<td>0.035</td>
<td>0.016</td>
<td>136</td>
</tr>
<tr>
<td>Insurance</td>
<td>0.509</td>
<td>0.026</td>
<td>0.018</td>
<td>182</td>
</tr>
<tr>
<td>Other financials</td>
<td>0.742</td>
<td>0.077</td>
<td>0.010</td>
<td>102</td>
</tr>
<tr>
<td>European financials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td>0.665</td>
<td>0.022</td>
<td>0.034</td>
<td>134</td>
</tr>
<tr>
<td>Insurance</td>
<td>0.679</td>
<td>0.063</td>
<td>0.019</td>
<td>196</td>
</tr>
<tr>
<td>Other financials</td>
<td>0.533</td>
<td>0.028</td>
<td>0.095</td>
<td>102</td>
</tr>
</tbody>
</table>

Figure 3 - Systematic risk regressions
Risk adjustment of bank stocks in the face of terror

stant risk significantly alters results. In doing so we want to encourage future research to carefully assess any assumption regarding risk adjustments in the context of catastrophic events.

Figure 4 reports cumulative average abnormal returns (in %). For each event, the first column shows results for the standard method of using a pre-issue beta to adjust for risk. The pre-issue beta is estimated using OLS in an estimation window of [-200; 21] relative to the event. The second column uses the SBETA estimates in the event period. SBETAs are estimated using the technique of Jostova and Philipov (2005). The U.S. and European Datastream Index serves as the relevant benchmark index. For the terror attack on 9/11 we observe a clear pattern. Using standard event study methodology produces highly negative and significant cumulative average abnormal returns for all subsamples. In contrast, accounting for time-varying risk during the event period, we find that cumulative average abnormal returns are not as negative and for some subsamples even non-significant zero. These findings clearly show that using a constant beta in the context of catastrophic events overestimates the negative valuation consequences. The reason for this is that the assumption of constant risk underestimates actual risk levels. This leads to expected returns which are too low when market returns are negative (which is usually the case for catastrophic events). Consequently abnormal returns are overestimated. Findings for the other two terror attacks are not as clear cut. Abnormal returns are in some instances overestimated, in other instances underestimated. The reason for this is that no dominant risk effect was observable and moreover that the market reaction was not universally negative (e.g. U.S. market indices rose slightly after the attack in Madrid, in part because the dollar index rose sharply against the pound and the euro). Again, our analysis does not attempt to generate new conclusions with regards to valuation effects surrounding the three attacks. Moreover, our analysis intends to show that the analysis of valuation effect is in particular sensitive to the assumption of constant risk in cases where the market strongly reacts as is the case on 9/11. Future research should carefully bear this in mind.

Analysis of total firm and systemic risk

Our previous analyses document a shift in systematic risk which appears extensively consistent with the assumption of efficient capital markets. We now proceed and analyze whether the shift in risk reflects an increase in total return risk volatility or whether it is offset by a decrease in idiosyncratic risk. This is important, because regulatory authorities and political institutions are not so much concerned about systematic risk of financial institutions, but instead worry about total and idiosyncratic risk. Rational portfolio managers and individual investors may form a broadly diversified portfolio with securities from several industries, which may diversify away from idiosyncratic, firm specific, risk and are, therefore, much more worried about systematic risk. On the contrary, regulatory authorities and political institutions whose task is the supervision and monitoring of the financial system are not able to diversify. They are, therefore, much more concerned about total and idiosyncratic risk levels of an entire industry. Previous analysis has shown significant systematic risk increases for U.S. financial institutions and also European insurance companies. The question is whether and if so by how much total risk is affected by such catastrophic events. We therefore analyze the effects of each terror attack on the levels on stock price return volatility. Again, our analysis uses individual firm return series in the 30 days surrounding each event and uses a standard GARCH(1,1) model to estimate daily volatility changes. As in our previous analysis we aggregate individual risk time series and form portfolios on a firm type and a geographic dimension. Each portfolio is estimated using an equally-weighted average of individual volatility time series within a particular subsample. For example, the GARCH estimate for insurance companies surrounding the 9/11 event is calculated as an equally-weighted average of all individual U.S. and European insurance companies’ volatility estimations. The results we obtain are very similar to our previous findings. For the terror attacks of 9/11 the portfolio of U.S. and European insurances experiences a large and sudden increase in volatility. As in our analysis of systematic risk, the risk levels gradually decrease in the period subsequent to the event. For the subsequent terror attacks in Spain and the U.K. we do not observe any significant risk effect.

Summarizing, total risk dynamics do not differ systematically from systematic risk dynamics. For regulatory authorities this suggests that the capital market and the financial system are able to quickly absorb such market wide shocks. A prevalent long-term effect is not apparent. As previously argued, our findings suggest that international capital markets and financial systems appear to be flexible and robust enough to absorb even those dramatic and potential devastating catastrophes. An additional concern that may arise

<table>
<thead>
<tr>
<th></th>
<th>U.S. 9/11</th>
<th>OLS</th>
<th>SBETA</th>
<th>Spain 3/11</th>
<th>OLS</th>
<th>SBETA</th>
<th>U.K. 7/7</th>
<th>OLS</th>
<th>SBETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td>-0.022</td>
<td>0.008</td>
<td>-0.004</td>
<td>-0.006</td>
<td>0.005</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>-0.056</td>
<td>0.011</td>
<td>-0.014</td>
<td>-0.019</td>
<td>0.009</td>
<td>-0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other financials</td>
<td>-0.027</td>
<td>0.003</td>
<td>0.003</td>
<td>-0.017</td>
<td>0.006</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. financials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td>-0.034</td>
<td>0.008</td>
<td>0.005</td>
<td>0.018</td>
<td>0.010</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>-0.032</td>
<td>0.010</td>
<td>-0.008</td>
<td>0.007</td>
<td>0.006</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other financials</td>
<td>-0.042</td>
<td>0.005</td>
<td>0.009</td>
<td>-0.018</td>
<td>0.010</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European financials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banks</td>
<td>-0.019</td>
<td>0.001</td>
<td>-0.007</td>
<td>-0.014</td>
<td>0.007</td>
<td>-0.003</td>
<td>0.006</td>
<td>0.006</td>
<td>0.001</td>
</tr>
<tr>
<td>Insurance</td>
<td>-0.068</td>
<td>-0.012</td>
<td>-0.010</td>
<td>-0.039</td>
<td>0.010</td>
<td>-0.009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other financials</td>
<td>-0.018</td>
<td>0.001</td>
<td>-0.001</td>
<td>-0.017</td>
<td>0.006</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4 - Cumulative average abnormal returns using different methods in estimating beta coefficients

Please note that our analysis was also conducted excluding the 5th and 95th percentile of volatility estimates to account for outliers. Results remain qualitatively the same. Furthermore, we tested our results to see if they are sensitive to the methodology applied and applied the measure of realized volatility of Schwert (1989). Results were qualitatively the same and are available upon request.
from such market shocks is that the systemic risk of the financial system may increase. The far reaching consequences of increased uncertainty regarding the political and economical stability may increase the risk that a subsequent market shock (i.e., another terror attack) will trigger a loss of economic value and confidence in the stability of the entire financial system [Dow (2000)]. In order to test for dynamics in systemic risk we follow the approach of De Nicolo and Kwast (2002), who argue that systemic risk can be measured as firm interdependencies, which can be measured as the pairwise correlation between stock returns. In line with Campbell et al. (2001), we calculate pairwise correlations for each firm in the subsample. Correlations for month t are calculated using the previous 12 months of daily returns. For example, to calculate the average correlation for our subsample of U.S. and European banks in July 2005 we (1) calculate pairwise correlation coefficients between all 152 banks using daily return series from July 2004 to June 2005 and (2) then calculate an equally weighted average of these correlations. Hence, in total we calculate 11,552 correlations for our subsample of U.S. and European banks to yield the average correlation in July 2005. For our entire analysis we calculate about 6 million correlations. We again subdivide our entire sample by firm type. However, we do not further subdivide our sample by geographic region as we attempt to analyze the systemic risk of the world wide financial system (or at least of the U.S. and European financial systems).

Figure 5 illustrates average return correlations during the time period starting in 1999 and ending in 2007. We find a clear likewise positive trend for banks, insurance companies, and other financial institutions. This is in line with previous findings that mean return correlations for U.S. firms [Campbell et al. (2001)] and U.S. banks [De Nicolo and Kwast (2002)] have increased over time. However, mean return correlations do not appear to be systematically affected by any of the three events. While systemic risk in the month subsequent to 9/11 even decreases, we find a sharp increase after the terror attacks in Spain and a moderate increase after the U.K. attacks. Apparently, our graphical analysis only gives an indication with regard to the relationship between systemic risks and terror attacks. However, a more detailed analysis, such as using OLS regression, would not yield results that were more convincing. As there are a myriad of factors which might affect systemic risk it is almost impossible to isolate the ‘terrorist attacks’ effect from any other determinant of systemic risk. However, our analysis indicates that a clear relationship between systemic risk and the terror attacks is not apparent.

Conclusion

It is now commonly accepted that new information leads to the (efficient) adjustment of stock price. Little is known, however, regarding the adjustment of (systematic) risk. New information about changes in the micro- as well as macroeconomic environment should naturally lead to adjustments of betas [Bos and Newbold (1984) or Campbell and Mei (1993)]. In this paper we fill this research gap by analyzing the dynamics of risk to new information. In particular, we are interested in two issues: (1) do we observe an adjustment of risk to new information? (2) How long does this adjustment take? Summarizing, our findings are strongly consistent with the assumption of efficient capital market. We observe that the attacks of September 11th had a strong short- and medium-term effect on the riskiness of insurance companies, which is possibly due to the expected loss exposure of insurance companies. Subsequent to 9/11 portfolio betas and volatility for U.S. and European insurances gradually decreased, which possibly reflects the gradual information diffusion concerning the exact loss exposures and business models of insurance companies. For example, betas and volatility of insurances which are not actively insuring terrorism loss experienced a decrease. We do not find any significant positive risk shifts subsequent to the terror attacks in Spain and the U.K. This may be explained by the fact that both attacks did not increase uncertainty regarding the political and economic situation since the inherent possibility for political and economically instability had been immediately priced after 9/11. Our results on systemic risk dynamics confirm prior research and show that mean return correlations between financial institutions increased over time. We do not observe any relationship between systemic risk and the terror attacks, however.

Figure 5 - Average return correlations over time

This figure illustrates the mean return correlations for U.S. and European banks, insurance companies, and other financial institutions over time. In line with Campbell et al. (2001) we calculate pairwise correlations for each firm in the subsample. Correlations for month t are calculated using the previous 12 months of daily returns. For example, to calculate the average correlation for our subsample of U.S. and European banks in July 2005 we (1) calculate pairwise correlation coefficients between all 152 banks using daily return series from July 2004 to June 2005 and (2) then calculate an equally weighted average of these correlations. Hence, in total we calculate 11,552 correlations for our subsample of U.S. and European banks to yield the average correlation in July 2005. In total we calculate about 6 million correlations. The grey lines represent the months of the terrorist attacks.
Risk adjustment of bank stocks in the face of terror

References

Appendix

Sampling properties of the SBETA estimates

The program code of the SBETA model is not publicly available and was not accessible upon request from the authors. We present simulation results of our program to document the quality of our implementation of the SBETA model. All parameter assumptions including shape and scale parameters of prior distributions are made according to Jostova and Philipov (2005).4

Table 1: Simulation results of our program to document the quality of our implementation of the SBETA model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>True</th>
<th>True</th>
<th>True</th>
<th>True</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>β</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>σ²</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>σβ</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>σ²β</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

4 Details of the conditional posterior distributions used in the Gibbs sampler as derived by Jostova and Philipov (2005) are available from authors upon request.
Macroeconomic risk – sources and distributions according to a DSGE model of the E.U.

David Meenagh
Cardiff University

Patrick Minford
Professor of Applied Economics, Cardiff University, and CEPR

Michael Wickens
Professor of Economics, Cardiff University, University of York, and CEPR

Abstract
We use a recent DSGE model of the E.U., which has reasonably satisfied dynamic testing, to identify the sources of risk in the economy and to describe the resulting stochastic distributions for key macro variables. We discuss the implications of this model for policy responses to recent commodity and banking shocks.
In the course of the past two years the E.U. economies have been hit by two large shocks: a surge in commodity and oil prices, and the ‘credit crunch’ resulting from the sub-prime banking crisis. The first of these has as its forerunners the large commodity/oil shocks of the 1970s and early 1980s. Precedents for the second are to be found in the Savings and Loans crisis of the U.S. in the latter 1980s, the Scandinavian banking crises of the early 1990s, and the Asian crisis of 1998. Nevertheless, no one shock is ever exactly like any other. Not only do many shocks hit economies, besides those of the type we have recently seen, but even when they are of the same type they differ in scale and details, as these precedents illustrate.

This paper is a preliminary attempt to understand the sources of shocks and their resulting stochastic distributions for key macro and financial variables. Since these shocks work via their effects on economies we use a model of the economy both to identify the shocks and to pin down their transmission via the economy. Why preliminary? Surely one might say that macroeconomic research has had plenty of time to sort out a definitive model of the world economy able to provide these answers? Unfortunately while previous research has indeed produced models of the world economy of much interest, recent research has undermined faith in the basis of these models, especially because of their loose foundations in aggregate demand and supply, and has set out an agenda of ‘micro-founded’ modeling which has followed many twists and turns as it has tried both to follow the requirements of theory and also to fit the facts. However, we believe that in the past few years serious progress has been made in finding convincing theories that also fit the facts. In this paper we describe a model of the E.U., which embodies this progress and we set out its implications for the sources and results of shocks.

This model is notionally complete as a description of the E.U. in the sense that all shocks are accounted for. That is, all the variables of interest are either explained by other variables or by shocks (the unexplained elements that are omitted from the model). However, it has obvious limitations. The most obvious is that it is a closed economy model. Trade and capital movements to and from the rest of the world are not explicitly modeled. Instead they enter the shocks. For example, net trade movements enter the shock to aggregate demand in the GDP identity while net capital movements (and the foreign returns that partly drive them) enter the monetary sector through the shock to interest rates as notionally ‘set by monetary policy’ according to a ‘Taylor Rule’ (supposedly describing how the central banks move interest rates in response to inflation and output movements). In spite of this, and of other limitations that will emerge, this model is impressive enough both in its theoretical foundations and its empirical performance for its implication to be worth exploring in some detail.

The Smets-Wouters DSGE model of the EU and its empirical performance

In a notable recent contribution Smets and Wouters (2003) proposed a dynamic stochastic general equilibrium (DSGE) model of the E.U. which they estimated by Bayesian methods after allowing for a complete set of pre-specified, but ad hoc, stochastic shocks. They reported that, based of measures of fit and dynamic performance, their model was superior in performance both to a Bayesian and a standard VAR (vector auto regression). In this paper we look carefully at their innovative model and review its performance, using a new evaluation procedure that is suitable for either a calibrated or, as here, an estimated structural model. The method is based on indirect inference. It exploits the properties of the model’s error processes through bootstrap simulations. We ask whether the simulated data of a calibrated or an estimated structural model, treated as the null hypothesis, can explain the actual data where both are represented by the dynamic behavior of a well-fitting auxiliary model such as a VAR. Our proposed test statistic is a multi-parameter Portmanteau Wald test that focuses on the structural model’s overall capacity to replicate the data’s dynamic performance.

The Smets-Wouters (SW) model follows the model of Christiano et al. (2005) for the U.S. but is fitted to the data using Bayesian estimation methods that allow for a full set of shocks. It is a New-Keynesian model. It is based on the new Neo-Keynesian Synthesis involving a basic real business cycle framework under imperfect competition in which there are menu costs of price and wage change modeled by Calvo contracts and a backward-looking indexation mechanism; monetary policy is supplied by an interest-rate setting rule. The effect is to impart a high degree of nominal rigidity to the model, both of prices and inflation. A central tenet of New-Keynesian authors is that this is necessary in order to fit the dynamic properties of the data which are characterized by substantial persistence in output and inflation, and hump-shaped responses to monetary policy shocks. In this paper we probe this argument. Specifically, we compare the SW model with a flexprice version in which prices and wages are flexible and there is a physical one-quarter lag in the arrival of macro information. Thus our alternative model is a type of ‘New Classical’ model. We also assess the contribution of the ad hoc structural shocks assumed by Smets and Wouters to the success of their structural model.

Indirect inference has been widely used in the estimation of structural models (Smith (1993), Gregory and Smith (1991), Gregory and Smith (1993), Gourieroux et al. (1993), Gourieroux and Monfort (1995) and Canova (2005)). Here we make a different use of indirect inference as our aim is to evaluate an already estimated or calibrated structural model. The common element is the use of an ‘auxiliary’ model. In estimation the idea is to choose the parameters of the structural model so that when this model is simulated it generates estimates of the auxiliary model similar to those obtained.
from actual data. The optimal choices of parameters for the structural model are those that minimize the distance between a given function of the two sets of estimated coefficients of the auxiliary model. Common choices of this function are the actual coefficients, the scores, or the impulse response functions. In model evaluation the parameters of the structural model are given. The aim is to compare the performance of the auxiliary model estimated on simulated data from the given structural model with the performance of the auxiliary model when estimated from actual data. The comparison is based on the distributions of the two sets of parameter estimates of the auxiliary model, or of functions of these estimates. Using this method we find that the SW model succeeds best in replicating the dynamic behavior of the data when its extreme wage/price stickiness is replaced almost entirely by a New Classical set up. It turns out that only small imperfectly competitive sectors (around 5%) are required in both the output and labor markets to achieve a rather good fit to the dynamics of the data. As it were, a little imperfection and stickiness goes a long way. The overall model embodies essentially all the features of a New Classical model but with much more damped inflation and interest rate behavior because the element of stickiness both dampens price behavior directly and indirectly via moderating the variability of price/wage expectations. The overall dampening of wage/price fluctuations is thus a multiple of the stickiness introduced.

The Smets-Wouters DSGE model of the E.U.

Following a recent series of papers, Smets and Wouters (2003) (SW) have developed a DSGE model of the E.U. This is in most ways an RBC model but with additional characteristics that make it New Keynesian. First, there are Calvo wage- and price-setting contracts under imperfect competition in labor and product markets, together with lagged indexation. Second, there is an interest-rate setting rule with an inflation target to set inflation. Third, there is habit formation in consumption.

Ten exogenous shocks are added to the model. Eight (technical progress, preferences, and cost-push shocks) are assumed to follow independent AR(1) processes. The whole model is then estimated using Bayesian procedures on quarterly data for the period 1970q1–1999q2 for seven Euro Area macroeconomic variables: GDP, consumption, investment, employment, the GDP deflator, real wages and government spending. The nominal interest rate. It is assumed that capital and the rental rate of capital are not observed. By using Bayesian methods it is possible to combine key calibrated parameters with sample estimates of the auxiliary model, or of functions of these estimates. Using this method we find that the SW model succeeds best in replicating the dynamic behavior of the data when its extreme wage/price stickiness is replaced almost entirely by a New Classical set up. It turns out that only small imperfectly competitive sectors (around 5%) are required in both the output and labor markets to achieve a rather good fit to the dynamics of the data. As it were, a little imperfection and stickiness goes a long way. The overall model embodies essentially all the features of a New Classical model but with much more damped inflation and interest rate behavior because the element of stickiness both dampens price behavior directly and indirectly via moderating the variability of price/wage expectations. The overall dampening of wage/price fluctuations is thus a multiple of the stickiness introduced.

We now turn to the actual errors derived from using the observed data. We use ‘actual errors’ from now on to describe the model’s

1 We tried higher order VARs, up to third order, but they are not used for model testing. For example, a VAR(3) generally shows all models as passing randomly, having no less than 75 coefficients. The power of the test is extremely weak.

2 Under our procedure the exact way to derive these is to generate the model’s own expected variables conditional on the available information in each period. These errors being calculated, AR processes are estimated for them. The SW model can then be bootstrapped using the random elements in these error processes. To find these errors one needs to iterate between the errors used to project the model expectations and the resulting errors when these expectations are used to calculate the errors. This procedure is complex and has so far produced large and implausible errors. In practice we used an alternative procedure to calculate the errors, which avoids this need to iterate. We projected the expected variables from the VAR(1) estimated above. Since this VAR is not the exact model but is merely a convenient description of the data, under the null hypothesis of the structural DSGE model these expected variables will be the model’s true expectations plus approximation errors. We conjecture that this will lower the power of the Wald statistic but only negligibly. To test this conjecture heuristically we raise the order of the VAR used to project the expectations and see whether it affects the results. We know that the model has a VAR representation if it satisfies the Blanchard-Kahn conditions for a well-behaved rational expectations model, as is assumed and checked by Dynare. As the order of the VAR rises it converges on this exact representation, steadily reducing the degree of the approximation. Hence if the results do not change as the VAR order rises, it implies that the approximation error has trivial effects. This is what we found when we raised the order from 1 to 3 (for example, the Wald statistic moved from 92.9 to 94.6; the model’s interest rate variance lower 95% bound moved from 0.024 to 0.025). We are also investigating further ways to solve for the exact expectations. It should also be noted that we excluded the first 20 error observations from the sample because of extreme values. We also smoothed two extreme error values in Q. Thus our sample for both bootstraps and data estimation was 98 quarters, i.e. 1975q4–1999q2.

We applied our testing procedure to this model using throughout the same data for the period 1970–1999 as SW and the same detrended series obtained by taking deviations of all variables from a mean or a linear trend. We begin by estimating a VAR on the observed data, using the five main observable variables: inflation (quarterly rate), interest rate (rate per quarter), output, investment, and consumption (capital stock, equity returns, and capacity utilization are all constructed variables, using the model’s identities; we omit real wages and employment from the VAR), all in units of percent deviation from trend. We focus on a VAR(1) in order to retain power for our tests, this yields 25 coefficients, apart from constants.
structural residuals, that is the residual in each equation given the actual data and the expected variables in it² (Figure 1). There are six behavioral errors: consumption, investment, productivity, interest rates (monetary policy), wage- and price-setting, and one exogenous process, ‘government spending,’ which is the residual in the goods market-clearing equation (or ‘GDP identity’) and therefore includes net trade as discussed earlier. The first error is that of the Euler equation and has a standard error of 0.5(%), roughly half as much again as assumed by SW [see Canzoneri et al. (2007) on the peculiarities of actual Euler equation errors], that for investment in the second has a standard error of 1.2%, around ten times that assumed by SW. Furthermore the AR coefficients (ρs) of the structural residuals are very different. There is hardly any persistence in the estimated residuals for consumption and investment, unlike the high persistence assumed by SW. In contrast, the actual inflation and Taylor Rule errors are persistent and not zero, as assumed. Figure 2 shows the comparison between SW’s assumed shocks and those shown in Figure 1. These differences turned out to be an important factor in the tests we carried out as we found that the model’s originally good performance in our tests came from the errors used by SW based largely on their priors. Once the true errors were substituted the original model was rejected and we only achieved acceptance once we had altered the model towards a predominantly New Classical form with only a small degree of stickiness.

Using these actual errors we proceeded to bootstrap this ‘mixed NC’ model. We found that the properties of the errors are the key element in the success or failure of both SWNK and SWNC in these tests. The more the error properties conform to NK priors, with dominant demand shocks, the better the SWNK model performs and the worse the SWNC does. In contrast, the more the errors conform to New Classical priors, the better the SWNC performs and the worse SWNK does. When the error properties are derived from observed data, both models have difficulty fitting the data, though SWNC model is probably the closest to doing so. What is the explanation for these results?

In the SWNK model, because capacity utilization is flexible, demand shocks (consumption/investment/money) dominate output and – via the Phillips Curve – inflation, then – via the Taylor Rule – interest rates. Supply shocks (productivity, labor supply, wages/inflation mark-ups) play a minor role as ‘cost-push’ inflation shocks as they do not directly affect output. Persistent demand shocks raise ‘Q’ persistently and produce an ‘investment boom’ which, via demand effects, reinforces itself. Thus the model acts as a ‘multiplier/accelerator’ of demand shocks. Demand shocks therefore dominate the model, both for real and nominal variables. Moreover, in order to obtain good model performance for real and nominal data, these demand shocks need to be of sufficient size and persistence.

In the SWNC model an inelastic labor supply causes output variation to be dominated by supply shocks (productivity and labor supply) and investment/consumption to react to output in a standard RBC manner. These reactions, together with demand shocks, create market-clearing movements in real interest rates and – via the Taylor Rule – in inflation. Supply shocks are prime movers of all variables in the SWNC model, while demand shocks add to the variability of nominal variables. In order to mimic real variability and persistence, suitably sized and persistent supply shocks are needed to mimic the limited variability in inflation and interest rates, only a limited variance in demand shocks is required, and to mimic their persistence the supply shocks must be sufficiently autocorrelated.

The observed demand shocks have too little persistence to capture the variability of real variables in the SWNK model, but they generate too much variability in nominal variables in the SWNC model. The observed supply shocks matter little for the SWNK but are about right in size and persistence for the real variables in the SWNC. The implication is that the flexibility of prices and wages may lie somewhere between New Keynesian and the New Classical models. For example, adding a degree of price and wage stickiness to the SWNC model would bring down the variance of nominal variables, and boost that of real variables in the model.

A natural way to look at this is to assume that wage and price setters find themselves supplying labor and intermediate output partly in a competitive market with price/wage flexibility, and partly in a market with imperfect competition. We can assume that the size of each sector depends on the facts of competition and do not vary in our sample. The degree of imperfect competition could differ between labor and product markets. For the exercise here we will initially assume that it is the same in each market and given by a single free parameter, v. This implies that the price and wage equations will be a weighted average of the SWNK and SWNC equations, with the weights respectively of (1-v) and v. We will also assume that the monetary authority uses this parameter to weight its New Keynesian and New Classical Taylor Rules as we have found that different values of the parameter v work best for a competitive (NC) model and an imperfect competition (NK) economy. In practice we can think of the weight v as giving the extent of the NC (competitive) share of the economy².

<table>
<thead>
<tr>
<th>Variances</th>
<th>Cons</th>
<th>Inv</th>
<th>Inflation</th>
<th>Wage</th>
<th>Gov</th>
<th>Prod</th>
<th>Taylor Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data variances</td>
<td>0.26</td>
<td>1.52</td>
<td>0.0007</td>
<td>0.278</td>
<td>0.141</td>
<td>0.091</td>
<td>0.227</td>
</tr>
<tr>
<td>SW variances</td>
<td>0.088</td>
<td>0.07</td>
<td>0.026</td>
<td>0.081</td>
<td>0.108</td>
<td>0.075</td>
<td>0.017</td>
</tr>
<tr>
<td>Ratio</td>
<td>2.9</td>
<td>89</td>
<td>0.3</td>
<td>3.4</td>
<td>1.3</td>
<td>0.24</td>
<td>13.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>-0.101</td>
<td>0.063</td>
</tr>
<tr>
<td>τ</td>
<td>0.154</td>
<td>-0.038</td>
</tr>
<tr>
<td>ρ</td>
<td>0.751</td>
<td>0.940</td>
</tr>
<tr>
<td>ρ</td>
<td>0.565</td>
<td>0.565</td>
</tr>
<tr>
<td>ρ</td>
<td>0.886</td>
<td>0.917</td>
</tr>
<tr>
<td>ρ</td>
<td>0.956</td>
<td>0.828</td>
</tr>
<tr>
<td>ρ</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2: Variances of innovations and AR coefficients (ρs) of shocks (data-generated versus SW assumed shocks)
We now choose a value of v for which the combined model is closest to matching the data variances while also passing the Wald test. This is an informal use of indirect inference that provides a broader criterion which better reflects our concerns with the models’ performance than simply applying a Wald score to, for example, the VAR coefficients. The optimal value turns out to be 0.94. This implies quite a small NK sector of only 6% of the economy, but it is sufficient to bring the overall economy’s properties close to the dynamic facts. We allowed the weight to be further varied around this to generate an optimum performance: in labor close to the dynamic facts. We now consider how good a fit this is.

The key difference is the ability of the model to replicate the variances in the data. No scaling is required and all the data variances lie within the model’s 95% bounds (Figure 3). The model, therefore, satisfies the necessary basic conditions for us to take it seriously; it produces behavior of the right size for both real and nominal variables and the structural errors are generated from the model using the observed data.

The model is still rejected, as are all versions of the Smets-Wouters model, by the Wald test (a test of where the joint set of VAR coefficients lies in the full joint distribution of the VAR coefficients according to the structural model) which is 100. A weaker test sets the covariances of this distribution to zero; under this the test becomes a geometric average of the t-statistics on each of the VAR coefficient (a ‘joint t-test’ as we might call it). Under this joint t-test the statistic is 90.8 with just three VAR coefficients lying outside their 95% bounds. The main discrepancy is the partial autocorrelation of interest rates which the model underpredicts. The other two coefficients involve the cross-effects of output and interest rates and inflation which in the data wander further from their 95% bounds. The main discrepancy is the partial autocorrelation of interest rates which the model underpredicts. The other two coefficients involve the cross-effects of output and interest rates and inflation which in the data wander further from their 95% bounds.

The variance decomposition of real variables is now heavily skewed on inflation, but they are only moderately outside their bounds.

<table>
<thead>
<tr>
<th>Actual estimate</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>State</th>
<th>t-stat*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A^c</td>
<td>0.88432</td>
<td>0.26572</td>
<td>1.02827</td>
<td>True</td>
</tr>
<tr>
<td>A'^c</td>
<td>-0.09612</td>
<td>-0.92015</td>
<td>1.9403</td>
<td>-0.39647</td>
</tr>
<tr>
<td>A^r</td>
<td>0.01867</td>
<td>-0.30244</td>
<td>0.08489</td>
<td>1.27573</td>
</tr>
<tr>
<td>A'^r</td>
<td>0.07935</td>
<td>-0.36553</td>
<td>0.28805</td>
<td>0.72452</td>
</tr>
<tr>
<td>A^c</td>
<td>-0.00824</td>
<td>-0.33625</td>
<td>-0.00284</td>
<td>1.83460</td>
</tr>
<tr>
<td>A'^r</td>
<td>-0.02461</td>
<td>-0.06640</td>
<td>0.06491</td>
<td>-0.75793</td>
</tr>
<tr>
<td>A^c</td>
<td>0.98856</td>
<td>0.68054</td>
<td>1.05976</td>
<td>0.30909</td>
</tr>
<tr>
<td>A'^r</td>
<td>-0.01074</td>
<td>-0.02810</td>
<td>0.05323</td>
<td>-1.14494</td>
</tr>
<tr>
<td>A^c</td>
<td>-0.01900</td>
<td>-0.04254</td>
<td>0.07168</td>
<td>-0.91032</td>
</tr>
<tr>
<td>A'^r</td>
<td>-0.00504</td>
<td>-0.01937</td>
<td>0.04928</td>
<td>-1.13906</td>
</tr>
<tr>
<td>A^c</td>
<td>-0.04105</td>
<td>-0.28473</td>
<td>1.84441</td>
<td>-1.51365</td>
</tr>
<tr>
<td>A'^r</td>
<td>-0.71538</td>
<td>-1.68976</td>
<td>4.31846</td>
<td>-1.38882</td>
</tr>
<tr>
<td>A^c</td>
<td>0.68194</td>
<td>0.44617</td>
<td>1.57336</td>
<td>-1.23444</td>
</tr>
<tr>
<td>A'^r</td>
<td>-0.00692</td>
<td>0.08981</td>
<td>1.93824</td>
<td>-2.00415</td>
</tr>
<tr>
<td>A^c</td>
<td>-0.01605</td>
<td>0.10374</td>
<td>1.04049</td>
<td>-2.51828</td>
</tr>
<tr>
<td>A'^r</td>
<td>0.21989</td>
<td>-0.27066</td>
<td>0.71764</td>
<td>0.03638</td>
</tr>
<tr>
<td>A^c</td>
<td>0.38855</td>
<td>-1.34895</td>
<td>1.33299</td>
<td>0.50045</td>
</tr>
<tr>
<td>A'^r</td>
<td>0.05457</td>
<td>-0.25489</td>
<td>0.27741</td>
<td>0.25731</td>
</tr>
<tr>
<td>A^c</td>
<td>0.93795</td>
<td>0.38337</td>
<td>1.25734</td>
<td>0.42118</td>
</tr>
<tr>
<td>A'^r</td>
<td>0.06281</td>
<td>-0.19528</td>
<td>0.29990</td>
<td>0.19567</td>
</tr>
<tr>
<td>A^c</td>
<td>-0.37166</td>
<td>-2.04721</td>
<td>0.26606</td>
<td>0.87816</td>
</tr>
<tr>
<td>A'^r</td>
<td>-0.97162</td>
<td>-4.17678</td>
<td>2.09513</td>
<td>0.07900</td>
</tr>
<tr>
<td>A^c</td>
<td>-0.05704</td>
<td>-1.05222</td>
<td>0.07775</td>
<td>1.4541</td>
</tr>
<tr>
<td>A'^r</td>
<td>-0.40669</td>
<td>-2.12602</td>
<td>-0.15480</td>
<td>-2.12935</td>
</tr>
<tr>
<td>A^c</td>
<td>0.89695</td>
<td>-0.52286</td>
<td>0.45459</td>
<td>2.79338</td>
</tr>
</tbody>
</table>

Joint t-test 90.8

* t-stat from bootstrap mean

<table>
<thead>
<tr>
<th>Prod</th>
<th>Cons</th>
<th>Gov</th>
<th>Inv</th>
<th>Price mark-up</th>
<th>Labor supply</th>
<th>Wage mark-up</th>
<th>Taylor Rule</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>26.041</td>
<td>6.513</td>
<td>0.413</td>
<td>2.903</td>
<td>0.068</td>
<td>49.568</td>
<td>0.000</td>
<td>14.494</td>
</tr>
<tr>
<td>I</td>
<td>13.792</td>
<td>0.054</td>
<td>0.158</td>
<td>34.390</td>
<td>0.003</td>
<td>33.683</td>
<td>0.000</td>
<td>17.920</td>
</tr>
<tr>
<td>K</td>
<td>20.767</td>
<td>0.033</td>
<td>0.121</td>
<td>18.648</td>
<td>0.002</td>
<td>39.124</td>
<td>0.000</td>
<td>20.706</td>
</tr>
<tr>
<td>L</td>
<td>22.861</td>
<td>4.391</td>
<td>6.197</td>
<td>2.762</td>
<td>0.033</td>
<td>54.980</td>
<td>0.000</td>
<td>9.566</td>
</tr>
<tr>
<td>a</td>
<td>1.087</td>
<td>11.414</td>
<td>0.556</td>
<td>0.469</td>
<td>6.091</td>
<td>6.246</td>
<td>0.002</td>
<td>74.135</td>
</tr>
<tr>
<td>Q</td>
<td>9.344</td>
<td>5.299</td>
<td>1.284</td>
<td>12.582</td>
<td>1.428</td>
<td>43.131</td>
<td>0.001</td>
<td>26.931</td>
</tr>
<tr>
<td>R</td>
<td>5.141</td>
<td>20.320</td>
<td>2.297</td>
<td>2.421</td>
<td>6.155</td>
<td>27.080</td>
<td>0.011</td>
<td>36.574</td>
</tr>
<tr>
<td>W</td>
<td>14.806</td>
<td>36.872</td>
<td>0.182</td>
<td>2.092</td>
<td>1.301</td>
<td>9.770</td>
<td>0.008</td>
<td>34.969</td>
</tr>
<tr>
<td>Y</td>
<td>24.531</td>
<td>4.518</td>
<td>3.780</td>
<td>3.538</td>
<td>0.052</td>
<td>48.228</td>
<td>0.000</td>
<td>15.352</td>
</tr>
</tbody>
</table>

Joint t-test 90.8

* t-stat from bootstrap mean

<table>
<thead>
<tr>
<th>Actual</th>
<th>Investment</th>
<th>Inflation</th>
<th>Output</th>
<th>Interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>5.4711</td>
<td>37.3162</td>
<td>0.2459</td>
<td>3.6085</td>
</tr>
<tr>
<td>Lower</td>
<td>17.200</td>
<td>20.7905</td>
<td>0.2292</td>
<td>1.5284</td>
</tr>
<tr>
<td>Upper</td>
<td>13.7364</td>
<td>172.3241</td>
<td>0.8405</td>
<td>11.3359</td>
</tr>
<tr>
<td>Mean</td>
<td>5.0452</td>
<td>69.2529</td>
<td>0.4425</td>
<td>4.4535</td>
</tr>
</tbody>
</table>

Figure 3 – Variance of data and bootstraps for the weighted model

Figure 4 – VAR parameters and model bootstrap bounds (weighted model)

We then buy these labor units off the manager for use in the firm. Similarly, each firm sells a proportion v_m of its output in an imperfectly competitive market and the rest in a competitive market. It prices one according to its mark-up equation on marginal costs, in the other equal to marginal costs. Its product is then sold to a retail bundler who combines it in fixed proportions and sells it at the weighted average price. Notice that apart from these equations the first-order conditions of households and firms will be unaffected by what markets they are operating in.

81
equilibrium than in the model. Again, apart from the longer-term interest rate predictions, all data-based IRFs for the Taylor Rule demand shock lie inside; these are (as we saw from the VAR coefficient) a lot more persistent in the data than in the model. Hence the model performance based on the IRFs is fairly good, with the main weakness in the interest rate prediction.

Looking at cross-correlations for the real variables, we find that the data-based correlations all lie inside the model’s bounds as they did for the NC model. Now, however, the weights for NK formulation of price stickiness, although small, produce behavior in the nominal variables that is almost within the 95% bounds of the weighted model (only the interest rate cross-correlation with output lies much outside).

To summarize, we find that a small weight on the NK formulation of price stickiness suffices to get the mixed New Classical-New Keynesian model to pass our tests. There are still some failures, so that the problem of finding a fully satisfactory specification in principle remains. Nonetheless, within the specifications at our disposal here, we can say that the E.U. economy appears to be closest to a New Classical specification and that this model gets the closest any modern micro-founded DSGE model has ever got to the data.

Using the SW MIXED NC model to analyze the economy’s risks

What has the model got to say about the two big shocks of 2007-8?

A useful way of introducing the model’s behavior is to see what it has to say about the big current shocks mentioned at the start of this paper. Our estimates of the shocks are intended to be illustrative of the order of magnitude rather than in any way precise. We assume that commodity price inflation would have added about 3% to headline inflation after a year – we model this as an equivalent shock to productivity since commodity prices do not enter the model as such.

For the credit crunch shock we assume 20% of borrowers were marginal and unable to obtain normal credit facilities after the crisis hit; we assume they could obtain credit on credit card terms (say around 30% p.a.) only. Other borrowers faced a rise in interest rates due to the inter-bank risk premium which has varied between 50 and 200 basis points during this crisis so far, as compared with a negligible value beforehand. There was also some switching of borrowers away from fixed-rate mortgages to higher variable rate ones. Overall, we assume these other borrowers faced a rise of 2% in rate costs. Averaging across the two categories, we get an
Macroeconomic risk — sources and distributions according to a DSGE model of the E.U.

estimated 6% per annum rise in average credit costs. We assume it carries on at this level for six quarters before gradually dying out.

What are the possible monetary policy responses? To estimate their effects on the economy we have to make an assumption about how monetary policy reacts (i.e., the response of interest rates). We compare two alternative approaches. The main approach currently followed by central banks committed to inflation targets is that they react according to a ‘Taylor Rule’ in which interest rates respond mainly to inflation, though also somewhat to output. We have, therefore, embedded a simple Taylor rule in the model in which real interest rates react by 1.5 times any rise in inflation from its target. An alternative approach, more suggestive of the ECB, is that interest rates are changed to meet a fixed money supply growth target.

When we run the model for these two shocks under these two policy assumptions we get the results shown in the six charts that follow (Figures 9-14). The last chart in each part (Figures 11 and 14) show the sum total of effects when the two shocks are combined. In all

Figure 9 – Productivity fall (weighted model, Taylor Rule)

Figure 12 – Productivity fall (weighted model, money supply rule)

Figure 10 – Credit crunch shock (weighted model, Taylor Rule)

Figure 13 – Credit crunch shock (weighted model, money supply rule)

Figure 11 – Total episode (weighted model, Taylor Rule)

Figure 14 – Total episode (weighted model, money supply rule)
our charts we show effects quarter by quarter (the horizontal axis measures time in quarters). On the vertical axis the left hand scale applies to output and shows the percent effect on output, the right hand scale applies to interest rates and inflation and shows the effect in percent per annum. Interest rates shown are those that consumers pay (i.e., under the credit crunch they include the estimated direct effect of the credit crunch).

Taylor Rule results

Under the pure Taylor Rule policy we find that interest rates rise substantially in response to the commodity price shock. This is because although there is a recessionary effect it is weak compared with the short-run effect on inflation. However, in response to the credit crunch shock, interest rates inclusive of the credit crunch effect fall markedly; this is in reaction to the deflationary effect of the shock, creating both a sharp recession and a sharp fall in inflation. Since the direct effect of the credit crunch on interest rates is initially 6%, to get market rates to fall would require an even bigger fall in base rates – in effect to below zero. While that is technically possible, it is in practice unlikely. Nevertheless it is interesting to see how sharply monetary policy would need to move under the Taylor Rule, and then of course we did not see the credit crunch shock in isolation. When one adds the two shocks together, the interest rate inclusive of the credit effect remains about constant, which means that base rates are cut to match the credit crunch effect while it is occurring. Plainly this means large cuts in base rates (effectively to around zero) in the attempt to offset the rise in interest rates charged for risk reasons.

If we look at the interest rates actually set by the ECB and the Bank of England, it is clear that they have deviated substantially from this Taylor Rule prescription. They have barely cut base rates since August 2007. This is to be compared with the U.S. Fed which has tried roughly to offset the tightening credit conditions with repeated cuts in its Fed Funds target (now set at 1%); it looks as if the Fed has roughly followed a Taylor Rule.

Money supply rule results

When we apply the alternative policy of money supply targeting, we find rather different results. Firstly, interest rates do not react to the commodity price shock because the demand for money is largely unaffected – the inflation rise more or less offsets the drop in output. But secondly, interest rates inclusive of the credit crunch rise in response to the credit crunch; interest rates only partially offset the tightening from the rising risk premium. This is because, as demand for money growth falls, in order to restore it to the level of the money supply growth target, only a small cut in interest rates is required. This reflects the strong response of money demand to the interest rate that is usually observed (we assume here 0.075%). Adding the two together we find that interest rates do rise over the whole episode but by a lot less than observed in practice in the E.U., and rather more than they observed in the U.S.

<table>
<thead>
<tr>
<th>Output</th>
<th>Lower</th>
<th>Upper</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Year</td>
<td>-2.797</td>
<td>2.473</td>
<td>1.334</td>
<td>-0.299</td>
<td>3.493</td>
</tr>
<tr>
<td>3 Years</td>
<td>-4.455</td>
<td>3.806</td>
<td>2.079</td>
<td>-0.356</td>
<td>3.727</td>
</tr>
<tr>
<td>5 Years</td>
<td>-4.898</td>
<td>4.597</td>
<td>2.450</td>
<td>-0.147</td>
<td>2.864</td>
</tr>
<tr>
<td>25 Years</td>
<td>-5.741</td>
<td>5.516</td>
<td>2.852</td>
<td>-0.110</td>
<td>3.028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consumption</th>
<th>Lower</th>
<th>Upper</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Year</td>
<td>-3.174</td>
<td>2.642</td>
<td>1.472</td>
<td>-0.399</td>
<td>3.645</td>
</tr>
<tr>
<td>3 Years</td>
<td>-4.763</td>
<td>3.699</td>
<td>2.209</td>
<td>-0.421</td>
<td>3.562</td>
</tr>
<tr>
<td>5 Years</td>
<td>-5.306</td>
<td>4.830</td>
<td>2.604</td>
<td>-0.185</td>
<td>2.861</td>
</tr>
<tr>
<td>25 Years</td>
<td>-6.280</td>
<td>6.030</td>
<td>3.125</td>
<td>-0.093</td>
<td>3.216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investment</th>
<th>Lower</th>
<th>Upper</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Year</td>
<td>-8.875</td>
<td>8.512</td>
<td>4.428</td>
<td>-0.078</td>
<td>3.139</td>
</tr>
<tr>
<td>3 Years</td>
<td>-16.777</td>
<td>14.908</td>
<td>8.048</td>
<td>-0.251</td>
<td>3.455</td>
</tr>
<tr>
<td>5 Years</td>
<td>-18.597</td>
<td>17.105</td>
<td>9.180</td>
<td>-0.169</td>
<td>2.897</td>
</tr>
<tr>
<td>25 Years</td>
<td>-20.003</td>
<td>18.952</td>
<td>9.835</td>
<td>-0.108</td>
<td>3.447</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inflation</th>
<th>Lower</th>
<th>Upper</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Year</td>
<td>-1.051</td>
<td>1.143</td>
<td>0.560</td>
<td>0.150</td>
<td>2.949</td>
</tr>
<tr>
<td>3 Years</td>
<td>-1.334</td>
<td>1.401</td>
<td>0.699</td>
<td>0.34</td>
<td>2.913</td>
</tr>
<tr>
<td>5 Years</td>
<td>-1.438</td>
<td>1.455</td>
<td>0.740</td>
<td>0.044</td>
<td>3.035</td>
</tr>
<tr>
<td>25 Years</td>
<td>-1.393</td>
<td>1.452</td>
<td>0.731</td>
<td>0.056</td>
<td>2.836</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interest rate</th>
<th>Lower</th>
<th>Upper</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Year</td>
<td>-0.933</td>
<td>1.005</td>
<td>0.496</td>
<td>0.148</td>
<td>2.975</td>
</tr>
<tr>
<td>3 Years</td>
<td>-1.389</td>
<td>1.285</td>
<td>0.629</td>
<td>0.143</td>
<td>3.045</td>
</tr>
<tr>
<td>5 Years</td>
<td>-1.231</td>
<td>1.330</td>
<td>0.655</td>
<td>0.152</td>
<td>3.082</td>
</tr>
<tr>
<td>25 Years</td>
<td>-1.320</td>
<td>1.312</td>
<td>0.672</td>
<td>-0.004</td>
<td>2.732</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value of capital</th>
<th>Lower</th>
<th>Upper</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Year</td>
<td>-2.059</td>
<td>2.264</td>
<td>1.094</td>
<td>0.216</td>
<td>3.228</td>
</tr>
<tr>
<td>3 Years</td>
<td>-2.396</td>
<td>2.533</td>
<td>1.266</td>
<td>0.122</td>
<td>3.063</td>
</tr>
<tr>
<td>5 Years</td>
<td>-2.490</td>
<td>2.608</td>
<td>1.315</td>
<td>0.079</td>
<td>2.818</td>
</tr>
<tr>
<td>25 Years</td>
<td>-2.518</td>
<td>2.721</td>
<td>1.330</td>
<td>0.194</td>
<td>3.411</td>
</tr>
</tbody>
</table>

Figure 15 - Key measures for each distribution

Implications for monetary policy

On the basis of our estimates and these two widely suggested rules for monetary policy, the verdict on U.S. policy is that it has been about right on one approach (the Taylor Rule), and a bit too loose on the other (the money supply target). In contrast, E.U. policy has been too tight on both rules: very much too tight on the Taylor Rule and rather too tight on the money supply target.

The Taylor Rule is what most central banks say they are following. It is also widely thought to be a good policy for containing inflation without unduly harsh effects on output. If we take this as our main guide it suggests that the U.S. Fed has got its approach to recent events about right while the ECB and the Bank of England, together with most other E.U. central banks, have set their policies rather too tight. The ECB could reply that it pays more attention to money supply. Even if that is the case, on this evidence it has still been rather too tight. The same applies to the Bank and most other European central banks.

Where might this excessive tightness come from? It appears from statements by board members of these bodies that on the European...
side of the Atlantic there has been concern about losing credibility in the face of rising 'headline' inflation whereas on the U.S. side of the Atlantic credibility was felt to be safe because 'core inflation' was not affected by the commodity price shock. Clearly assessing credibility requires another sort of model entirely – one that allows for political backlash against the regime of inflation targeting among other elements. But certainly in the context of such a severe credit shock, the U.S. judgment seems to be valid judging by events. Credibility has not been threatened because credit conditions have in effect been greatly tightened by the credit shock just as the commodity shock was hitting. In the U.S. even the efforts of the Fed to offset the rise in credit costs failed to do so completely.

Our assessment, based on the views of central bankers and their advisers, has assumed that these two monetary rules represent the best practices available. It would, therefore, be interesting to experiment with other monetary policy rules, both evaluating their properties in general and in the context of these shocks. That is something that we have left for future work.

What has the model got to say about the distributions of key variables?
In Figures 16 to 24, we show the raw bootstrap (demeaned) distributions of the main macro-variables up to 25 years ahead. The pattern shows little skewness or kurtosis and is close to normality. Near term uncertainty is limited but the full extent of it builds up quickly, reaching its steady state within about a year. Figure 15 shows the key measures for each distribution at 1 year, 3, 5, and 25 years: 95% bounds, variance, skewness, and kurtosis. (Note units: % for real, % per quarter for inflation and interest rate). Real variables are highly correlated, as illustrated by the joint distribution of output and consumption 12 quarters, or 3 years, ahead in Figure 23. This is not because consumers do not attempt consumption smoothing, as we assume habit persistence in order to increase risk premia. Rather it is because of the exigencies of market-clearing which drives real interest rates (and real wages) to equate a supply that is constrained by limited stocks of labor to aggregate demand. The fluctuations in real interest rates force consumers to closely match consumption to available output.

In order to find a measure of risk we weight the return on equity (Q) by the consumption-based stochastic discount factor, the marginal utility of consumption to give \(Q_{t+12} / (C_{t+12} - hC_{t+11})^\sigma \). The assumption of habit persistence (\(h > 0 \)) is chosen to enhance the volatility of the discount factor; taking a horizon of three years ahead (\(t+12 \)) and find the distribution of \(Q_{t+12} / (C_{t+12} - hC_{t+11})^\sigma \). We normalize this ratio to unity at the means of the variables \(Q \) and \(C \); the mean of the ratio will be less than unity. We note that consumption is highly correlated with output at the 3-year horizon, as are all the other macroeconomic aggregates – see the figures above which show the joint distribution of output with consumption and of \(Q \) with consumption. Consequently, it is clear that the stochastic discount factor (which is inversely related with consumption) will also be strongly inversely related to other outcomes. Furthermore, negative outcomes will
have low discount factors and positive outcomes will have high discount factors.

The equity risk premium is

\[E \left[\frac{Q_{t+12}}{(C_{t+12} - hC_{t+11})^{\alpha}} \right]^{\frac{1}{\alpha}} \]

We find, however, that this is negligible. This can be seen from the distribution of \(\frac{Q_{t+12}}{(C_{t+12} - hC_{t+11})^{\alpha}} \) shown in Figure 21, which has both low-variance and is close to normal. The distribution of \(Q \), the value of capital, is quite concentrated with a variance 12 periods ahead of only 1.6% (see Figure 22 for the multi-horizon distribution of \(Q \)). Hence, while the stochastic discount factor varies considerably and in a nonlinear way, this does not have any noticeable effect when applied to such a small variation in \(Q \). The same applied when we took a four quarter horizon. Such a finding is familiar in the literature on asset pricing. The best known of these is the equity premium puzzle of Mehra and Prescott (1985). Recent formal econometric estimation of the equity risk premium by Smith et al. (2008) shows that neither habit persistence nor Epstein-Zin non-separable preferences significantly raise the equity premium. The problem is that there is not enough variation in the discount factor for the theoretical equity risk premium to capture the much greater size of the observed equity premium. Habit persistence is an attempt to raise the discount factor, but the variability of consumption is too low.

Limitations of model: how close are the model's shocks to those of the 'real world'?

In this model shocks to productivity and labor supply dominate the variability of output, while demand shocks (to consumption, investment, and monetary policy) dominate inflation and interest rate variability. In effect the demand shocks have to be equated with available supply by interest rates and prices, and the available supply, as set by supply shocks, largely fixes output.

Credit shocks of the sort that we have seen recently raise the risk-premia that consumers and investors have to pay, and are captured in the model through the shock terms of the consumption and investment equations. Oil and commodity price shocks are contained in the productivity shock, as in our illustration above. Representing these shocks in this way is not ideal, and is an inevitable compromise with the tractability brought by using a closed-economy model. We and colleagues are working on a joint open model of the U.S. and E.U.

We might also ask how important it is that national divergences and shocks, such as German reunification, are ignored with any overall effect of such shocks impounded into an E.U. aggregate shock. We checked whether the model’s performance was improved by allowing explicitly for a list of such special national shocks, and we found that it was not. We also checked whether making even more intrusive allowances for ‘trend’ via the Hodrick-Prescott filter would improve the model’s performance; again it did not.

Some might question the primacy of supply shocks in the determination of output. Here we tested carefully the original NK specification of SW which gives primacy to demand shocks with only a subsidiary role via ‘cost-push’ to supply shocks. This version was strongly rejected, generating too much variability in output and too little in inflation and interest rates. The key point to make about the
role of supply shocks in the mixed NC version is that they also act as shocks to demand via their effect on both consumption and investment plans. One can think of a sustained rise in productivity as setting off a wave of ‘optimism’ on the demand side just as it raises output from the supply side. Indeed the extra demand it generates will typically exceed the extra supply and drive up real interest rates (see the model’s deterministic IRF for a productivity shock).

In short, the model has undoubted limitations but the fact that it is in principle complete in its treatment of shocks, theoretically well-founded, and also fits the dynamic facts count strongly in its favor as a tool for examining our problems.

Are there policy lessons to be learned from the model?

We have examined above how monetary policy should have reacted to the recent dual shocks hitting the world economy. We did so under two well-known monetary policy rules, a simple Taylor Rule strictly targeting inflation and a money supply growth rule. Empirically the simple Taylor Rule allows the model to fit the facts best. However, we might ask whether some other rule could have produced better overall economic behavior from the viewpoint of households. One such rule could be price level targeting, others could be alternative variants of the Taylor Rule. This is something to be looked at in later work. On the basis of its empirical performance it appears the assumed simple reaction of real interest rates to inflation is a fairly strong stabilizer of the economy – essentially it makes inflation and real interest rates vary directly with each other so sharing the load of reducing excess demand.

Another question we might ask is whether some policy environment could have avoided the two shocks. Essentially this lies beyond this model. Some would like to model the credit process itself. Plainly this is not done here but it is certainly a worthwhile endeavor. Others would like to include the regulatory framework in some way, presumably this would accompany the modeling of the credit process. Furthermore, commodity and oil price movements are determined in the wider world economy. Modeling these would require a world model with a monetary and other transmission mechanisms to an emerging market bloc. Such questions, which endogenize the dual shocks analyzed, are for later, more ambitious work.

The model is also largely silent on fiscal policy. Government spending is exogenous, with no consumption value to households (spending has to be done for overriding reasons such as infrastructure) and taxes are treated as ‘lump sum’ so that they have no effect on supply. Households face fully contingent markets and so smooth their purchases optimally across time. There is, therefore, no role in this model for ‘Keynesian’ fiscal policy – bond-financed tax movements have no effect and the government spending impulse responses are weak.

Conclusion

In the wake of the banking crisis, one widely-met reaction has been that we should rip up DSGE models with no banking systems and start again. While it is undoubtedly worthwhile to model the roles of credit and money in the economy, one can also model the effects of shocks to banking and money indirectly as shocks to the costs of credit, and to the provision of money by the central bank indirectly by the interest rate behavior it induces. This is what is done here based on the DSGE model developed by Smets and Wouters, which builds on the work of Woodford, Christiano, and others. We in our turn have modified the price/wage rigidity assumptions of these ‘New Keynesian’ models, turning them back into close cousins of ‘New Classical’ models with a high degree of price/wage flexibility. Such a model, which has a large weight on price/wage flexibility and a small weight on rigidity, appears to best mirror the facts of the E.U. business cycle. This ‘weighted’ model produces some fairly plausible measures of the effects of the recent twin banking and commodity shocks on the E.U. economy, and of the riskiness of the macro-environment from the pure business cycle viewpoint. Like other work on general equilibrium models of asset prices, it does not, however, give a plausible account of asset price uncertainty. Nonetheless, the model has interesting policy implications for the business cycle. It emphasizes the role of monetary policy on market interest rates and downgrades the role of fiscal activism, leaving fiscal policy as needing to be consistent with inflation targets and the money creation implied by interest rate behavior. Until we have been able to develop DSGE models with explicit banking systems that can match the data, the type of model employed here seems to provide us with a reasonable stopgap for thinking about current policy over the business cycle.

References

- Gourieroux, C. and A. Monfort, 1995, Simulation based econometric methods, CORE Lectures Series, Louvain-la-Neuve
- Smith, P. N., S. Sorensen, and M. R. Wickens, 2008, “General equilibrium theories of the equity risk premium: estimates and tests,” Quantitative and Qualitative Analysis in Social Sciences
Risk management in the evolving investment management industry

Bridging the gap – arbitrage free valuation of derivatives in ALM

Does individual performance affect entrepreneurial mobility? Empirical evidence from the financial analysis market

A new approach for an integrated credit and market risk measurement of interest rate swap portfolios

Risk drivers in historical simulation: scaled percentage changes versus first differences

The impact of hedge fund family membership on performance and market share

Public sector support of the banking industry

Evaluating the integrity of consumer payment systems

A loss distribution for operational risk derived from pooled bank losses
Risk management in the evolving investment management industry

Philip Best, Chief Risk Officer, Threadneedle Asset Management
Mark Reeves, Partner, Capco

There is no doubt that buy-side risk management practices have generally lagged behind those of the sell-side. It is equally clear that this is now changing and buy-side firms are catching up fast. Before looking at catalysts driving the buy-side to improve its game, it is worth reflecting on why the buy-side was largely a bystander in the risk management revolution that has swept the banking industry over the last fifteen years.

Firstly, while proprietary trading organizations such as investment banks risk their own capital, asset managers invest clients' money in accordance with specific objectives set out by clients. The implications of this are that client funds are 'off-balance sheet' for asset management businesses. Leaving aside seed funds that are clearly 'on-balance sheet,' the fund manager's responsibilities are mainly limited to fiduciary obligations for client funds. This simple fact accounts for much of the divergence between the buy-side and sell-side.

Secondly, early in the 1990s, investment banks, risking their own capital, implemented significant market risk controls in addition to their traditional credit risk management and control. Market risk control frameworks had two key elements: an independent market risk control function and market risk limits designed to establish constraints within which traders could operate safely.

This significant development was not generally followed by asset managers. Controls on the buy-side have been weaker, typically defined by a public prospectus or private investment mandate. The mandates and prospectuses are deliberately drafted to only set the most general of investment guidelines so that they are unlikely to act as a significant constraint of risk, except in the general sense of the overall market and strategy that the fund seeks to invest within. This leaves fund managers in the position of both risk taker and risk controller, or to put it more benignly, they are responsible for managing both risk and return. This is the same position that sell-side traders were in during the 1980s.

What made this untenable for investment banks was the amount of leverage, or risk, that a trader could employ. Until recently, leverage was the preserve of hedge funds and was not allowed in long only funds.

The final factor that has led to divergence is the regulatory regime. There is no doubt that banks have been 'helped' by regulators to come to the conclusion that comprehensive and robust risk management frameworks are required. Basel II requires banks to implement risk control frameworks for operational risk and at the same time requires a step change in the quantitative aspects of credit risk measurement. Note that previous directives had ‘encouraged’ banks to establish robust market risk control frameworks. Before Basel II, most banks did not have operational risk management controls. There is no doubt that banks would not have invested so much on risk management without regulatory pressure.

In contrast, asset managers have simply not been exposed to the same regulatory pressure in relation to clients’ funds as these are considered off-balance sheet for regulatory purposes (although this is not true where retail products offer guarantees, but more on this later). Treating client funds as off-balance sheet from a regulatory standpoint continues under Basel II, hence asset managers are not under the same pressure as banks to improve their risk management frameworks since their capital is not directly driven by funds under management. This somewhat overstates the position as operational risk clearly is on balance sheet for asset managers, and regulators are encouraging asset managers to adopt similar market risk tools as those used by the sell-side as part of the UCITS framework. Nonetheless, capital is not required for client funds, except where a client guarantee exists or is implied.

Despite the lower regulatory pressure, risk management is changing within asset management firms. To be clear, the evolution in risk practices apply most strongly to asset managers who are not passive managers; the reasons for this will become clear below. The change is being driven by several factors, namely hedge funds, UCITS III, use of derivatives, institutional investors, and the credit crisis.

Hedge funds and UCITS III

Pressure from investors for improved returns and diversification has seen the traditional asset manager move into more complex investment strategies. Recent years have witnessed a trend towards the asset management industry separating into alpha generation (value added by active management) and beta provision (passive market return). This has influenced the investment management sector in a number of ways. Firstly, institutional investors are showing increasing interest in the ‘alternatives’ arena, such as hedge funds and private equity vehicles. Investment by institutional investors in hedge funds is still limited. According to the U.K.’s Investment Management Association (2007), hedge fund assets only constitute 0.5-1.0% of total institutional assets.

On the active management side of the industry, the distinctions between traditional (long only) managers and hedge funds have begun to blur. A major catalyst is the UCITS III regulation. This allows fund managers to create funds with similar characteristics to hedge funds but that have the benefit – from the investors' perspective – of operating under a regulatory umbrella. UCITS III allows funds to invest in a wider range of financial instruments, to

1 Buy-side is taken in this article to refer to asset managers who may or may not offer hedge funds. The term buy-side in this article is not intended to refer to pure hedge fund businesses.
2 Managed in the U.K. by IMA members for institutional clients
go both long and short, and to use leverage. UCITS III permits the use of derivatives, which may be used by firms as part of their general investment policies and not just for hedging purposes. UCITS III does impose certain risk management requirements, especially for the so-called ‘sophisticated’ UCITS III funds.

A popular example of UCITS III funds are the 130/30 funds. 130/30 funds can use leverage to take a long position of up to 130% and a balancing short position of 30%, thus producing a fund with a net exposure of 100%. Although 130/30 funds are UCITS III funds, they have some similarities to long-short hedge funds. However, 130/30 funds are unlikely to move their market positioning as dramatically as hedge funds can as their mandates typically define more constraints than those which exist for a hedge fund. Nonetheless, UCITS III allows asset managers to use the tools of leverage and the taking of short positions to facilitate the creation of funds with similar complexity to those of hedge funds.

The pursuit of alternative ways of generating return is providing one of the main drivers for change in risk management in the asset management industry. For asset managers offering hedge funds and/or complex UCITS III funds, the risk management approach adopted is essential to their success both in generating consistent returns and also in selling an investment proposition to investors. Perhaps one of the unintended consequences of UCITS III is that it is raising the barrier to entry for firms, as offering such funds and creating the necessary risk management framework requires significant investment in technology. This trend is evidenced by the uptake of sophisticated risk systems by the buy-side. Once used almost exclusively by the sell-side, increasing numbers of asset managers are implementing advanced risk management systems.

Asset managers starting to offer hedge funds must familiarize themselves with the notion of ‘absolute return.’ Unlike long-only funds tracking a benchmark, absolute return funds are looking to make positive returns regardless of whether the overall market has fallen or risen, thereby generating returns with a degree of independence from market movements. This represents a fundamental change in mindset for traditional buy-side firms and has also had significant implications for their risk management practices. Techniques which simply allow comparisons with a benchmark (tracking error) are of limited use and must be supplemented with other methods for measuring risk that are capable of monitoring the risks of complex strategies and instruments.

The diversification of traditional fund managers into complex investment strategies is a growing phenomenon. A recent survey by KPMG International (2008), which gauged the views of over three-hundred asset management professionals in 57 countries, revealed that 57% of mainstream fund management firms questioned use derivatives in their portfolios. This rose to 74% amongst the larger firms (with AUM of U.S.$10bn and above). The survey also found that 61% of fund management respondents managed hedge fund strategies, rising to 71% for the larger firms. Of the Western European firms surveyed, 40% expected their firms’ use of derivatives to increase over the next two years, while 44% believed their use of hedge funds would rise.

Use of derivatives

As the survey indicates, asset managers look set to increase their use of derivatives, a factor which is obliging firms to reassess their risk management frameworks still further. Specialist resources and technology are required to risk manage derivatives, since they behave in unexpected ways and generally involve the use of leverage, which magnify investment losses. Derivatives also incorporate a host of other risks, such as counterparty and liquidity risk, that can to trap the unwary. Indeed, the latter two dangers have been brought sharply to the attention of asset managers by the recent credit crisis. The management of counterparty risk is an area of under-investment in many asset management firms, while the use of derivatives is forcing fund managers to upgrade their counterparty risk management practices.

Pressure from institutional investors

Traditionally, a considerable part of buy-side ‘risk management’ actually focused on client reporting rather than risk management per se. In the retail sector, perhaps due to a lack of understanding and interest on the part of consumers and IFAs, there has been little pressure on asset managers to improve their underlying risk management. In contrast, institutional investors are becoming ever more sophisticated in their knowledge of risk management and consequently more demanding.

The credit crisis

Although the credit crisis has not hit the asset management industry as hard as the world of investment banking, the recent turmoil has nevertheless made a significant impact on asset managers. The crisis of the last twelve months has thrown the issue of credit and counterparty risk into sharp relief, forcing asset managers to rethink the way they manage these risks. In the case of credit risk, the credit crunch has underscored the dangers of relying on ratings agencies to provide an accurate assessment of the risks carried by certain instruments, such as asset-backed securities and structured products (CDOs). The credit crisis has exposed flaws in the ability of ratings agencies to assess risk and raised industry concerns about the conflicts of interest inherent in the agencies’ business model.

Counterparty risk has become a particularly serious issue for those buy-side firms using derivatives. The collapse of Lehman Brothers means that a large number of buy-side firms will have to deal with the failure of a derivatives counterparty for the first time. This will force many buy-side firms to examine the adequacy of their risk
management frameworks for measuring and controlling counter-party risk.

The asset management industry’s use of asset-backed securities in money market funds has also highlighted the need to have a comprehensive risk management framework that does not skim over so-called ‘low-risk’ products such as asset-backed securities. A case in point is U.S. money market funds, for whom ‘breaking the buck’ (i.e., the price dropping below 100) may require the asset manager to make up the difference. It is rumored that several houses have stepped in to prevent money market funds from breaking the buck. This focuses fund managers’ minds, firstly, on the fact that their greatest risks may lie in their lowest risk funds and, secondly, that they have a high level of contingent leverage (i.e., contingent on process failure by the asset manager). One fund breaking the buck can significantly weaken a firm’s capital base.

Conclusion
The asset management industry is going through a period of rapid change, which involves many fund managers taking more risk through a variety of mechanisms, such as derivatives, structured products, complex funds, and leverage. These developments bring both opportunities and challenges and are driving firms to develop their risk management practices. Global events such as the credit crisis are also forcing asset managers to reassess the way they manage risk. The winners will be those firms who grasp the nettle and invest wisely in both the technology and the skilled personnel required to manage risk in this new and more complex world.

References
• Investment Management Association, 2007, “Fifth annual industry survey,” July
• KPMG International, 2008 “Beyond the credit crisis: the impact and lessons learnt for investment managers,” July
Bridging the gap – arbitrage free valuation of derivatives in ALM

Peter den Iseger, Head of Research, Cardano

Joeri Potters, Senior Financial Engineer, Cardano

In the last decades of the previous century, insurance companies and pension funds embraced the scenario-based asset and liability management (ALM) model. ALM enables them to quantify and assess the long term effects of strategic decisions, which explains why it has gained considerable popularity. It is now used by many parties as their first and foremost instrument for optimising their long term strategy. From the pioneering years on, ALM has gone through quite a development. A stream of new and innovative derivative products is continuously added to the more traditional investment categories, like equities and fixed income. There are several reasons why the demand for such new products has grown dramatically over the past few years. Adverse market movements as well as recent changes in regulation and international accounting standards (such as IFRS, FRS17 in the U.K.) have made people more aware of the market risk in their investment portfolios. The increased risk perception has led to higher demand for derivatives, instruments that are particularly useful for mitigating extreme market risks. When ALM is seen as the appropriate instrument for assessing the effects of strategic decisions (Capelleveen el al. (2004)), no exception should be made when it comes to derivatives strategies. The set of possible instruments in the asset structure should, therefore, be expanded with swaps, swaptions, equity options, inflation swaps, and the like. Only then will it be possible to judge the added value of derivatives on a strategic level. Unfortunately, it is not trivial to combine ALM and derivatives for two reasons. First, derivatives should be valued in a risk-neutral environment, which an ALM model generally does not provide. Assumptions about equity risk premiums, for example, contradict the risk-neutrality assumption. But the problem lies deeper than that. Even if we are able to overcome the first issue and derive a risk-neutral version of the ALM model, the second issue is that we cannot simply ‘plug in’ existing option formulas from finance. The reason for this is simple. The assumptions underlying the ALM economy and the option pricing formulas are inconsistent. Combining the two, while ignoring the differences, may lead to severe pricing errors and eventually even to making the wrong strategic decisions. Nevertheless, it is possible to apply the key concepts behind option pricing and developing derivative prices that are in line with the underlying ALM model.

This paper discusses a general method for incorporating derivatives in ALM. Many publications (Black and Scholes (1973), Baxter and Rennie (1996), Björk (1998), Karatzas and Shreve (1998)) have been dedicated to risk-neutral valuation of derivatives, but the combination of derivatives and ALM modeling is quite new. In this paper, we start with a general discrete-time ALM model. We extend this to a continuous-time equivalent, for which we derive an arbitrage-free version. From this point on, we can derive option prices for different types of products and different types of underlying processes. We demonstrate that quite serious pricing differences may occur when, for example, a typical Black-Scholes-like lognormal distribution is assumed in our option pricing formula, while the stock index returns in ALM are governed by a Gaussian process.

A general model for the external economy in ALM

We aim to incorporate derivatives in ALM. There are many different ALM models but what they all have in common is that they consist of at least the following four building blocks.

- Economic market variables (the economy) – returns on various asset classes, nominal and real yield curves, inflation, etc.
- The asset structure – the asset portfolio value as a function of the external economy, while taking into account investment and rebalancing rules.
- The liability structure – the value of future obligations in a going-concern context, taking into account issues like mortality, career, and civil status.
- The policy instruments – instruments such as contribution rate policy, indexation policies for active and inactive members, asset allocation, and strategic use of derivatives. Some instruments can be deployed as a function of the funded ratio or other variables.

Our focus will be on the first building block, which generates scenarios for the market variables. It is crucial that these scenarios are realistic as they govern the development of the assets and liabilities. The funding ratio or solvency follows as the ratio (difference) of assets and liabilities. Indexation or premium policies are possibly conditional on the level of the funding ratio. Hence, the entire system fails when scenarios are unreliable. Different models exist to describe the external economy. In this paper, we assume the generic model \(y(t+1) = \mu(t) + \Sigma(t)Z(t+1); S(t+1) = \Phi(S(t), y(t+1), t). \)

The core of the economy is the random state vector \(y(t) \). All relevant economic variables are derived from this vector, either directly or indirectly, as a function of a number of state variables. The state vector – and consequently the entire economy – is governed by two parts: an expected state and a stochastic noise term. The vector \(\mu(t) \) is an adapted process for the expected value of the state vector. This implies that the expectation for the state vector at time \(t+1 \) is completely deterministic at time \(t \). The stochastic terms consist of a vector of Gaussian variables \(\zeta(t+1) \), provided with the correct volatilities and cross-correlations (the matrix \(\Sigma(t) \) is the Choleski decomposition of the covariance matrix \(\Omega \)).

The second part of the model describes how to treat relevant variables other than the ones in the state vector. The value of such variables can be derived from the state vector, the value of the non-

1 We would like to thank our colleague Ümit Özer for providing the S&P market data.
state variable at the previous period, and in some cases the factor time. A trivial example is the level \(S(t) \) of an equity index in time. Assuming that the index return is a state variable, the level \(S(t+1) \) of the equity index at time \(t+1 \) follows from the index level \(S(t) \) and the index return. In the next section, we will discuss what adjustments to the basic ALM model are required to make it possible to work with derivatives.

Valuation of derivatives in ALM

For this paper, we have a whole range of equity, fixed income, foreign exchange, and inflation linked derivatives to choose from. We have decided to exemplify our theory using a plain vanilla equity option. We stress, though, that the concept behind the example holds for all derivatives. Valuation of derivatives has received a lot of attention ever since the breakthrough in research by Black and Scholes (1973) and Merton in the 1970s. In brief, the theory is based on the observation than any derivative can be replicated by a portfolio of assets. This replicating portfolio is set up such that it has the same value and risk profile as the option at any time until expiry of the option. Consequently, the present values of the option and the replicating portfolio must be equal as well, or there would be an arbitrage opportunity. Setting up a replicating portfolio comes at a cost. The composition of the portfolio must be continuously adjusted to ensure that it remains a perfect hedge. For a more elaborate and very intuitive text on this theory, we refer to Baxter and Rennie (1996). When we try applying the Black-Scholes theory in ALM, we run up against a problem. An important principle underlying Black-Scholes is that we work in continuous time and that hedging occurs continuously. The ALM model is defined in discrete time, and the state variables are customarily observed only once a year. We wish to unite ALM and derivatives, and need a model in continuous time to fill up the ‘voids’ in the discrete model. The interpretation for the continuation is clear: the ALM model should not be seen as a discrete model, but rather as a continuous model for which the states are only observed periodically. Once the continuous-time model is known, we derive an arbitrage-free version in which continuous-time processes can be incorporated correctly. The arbitrage-free results are assessed periodically again. So, to go from a discrete ALM model to a discrete model suited for derivatives, we take a detour that leads along a continuous version of the initial ALM model.

We introduce a stochastic differential equation for the new variable that describes the state vector in continuous time on the interval \((t, t+1]\). For ease of notation, we scale the time interval to \((0,1]\). We write \(\mu \) and \(\Sigma \) instead of \(\mu(t) \) and \(\Sigma(t) \) as these variables are constant on the given interval: \(\text{d}y(t) = \mu \text{d}t + \Sigma \text{d}W(t), \) \(\text{d}x(t), \) \(\text{d}y(0) = 0. \) The new process is defined such that \(\text{d}y(t) = y(t+1) \). This way, a model arises that describes the state vector in continuous time and matches the previous model in the discrete moments. Below, we demonstrate in two examples how an arbitrage-free version is derived for different types of derivatives and underlying methods.

Example 1 — Lognormal distribution for the stock process

The state vector is assumed to consist of a single variable, which describes the return \(y(t) \) on a stock price. As there is only a single state variable, we denote the standard deviation by \(\sigma \) instead of the Choleski matrix \(\Sigma \). The value of the stock price in the interval between two periods is governed by \(\text{d}y(t) = \mu \text{d}t + \sigma \text{d}W(t), \) \(S(t+1) = S(t) \exp(y(t)) \), or written as a differential equation \(\text{d}S(t+1) + S(t+1) = (\mu + \frac{1}{2}\sigma^2)\text{d}t + \sigma \text{d}W(t) \). Under this assumption, the distribution of the stock price is lognormal anywhere between \(t \) and \(t+1 \). A clear advantage of this choice is that it links up perfectly with the Black-Scholes theory. Our goal is to derive a risk-neutral version of the model by applying the martingale representation theorem (Karatzas and Shreve 1998). A likely candidate to serve as martingale is the discounted stock price. We therefore define as numeraire the money account \(B(t+\tau) = B(t) \exp(r \tau) \), which depends on the constant interest rate \(r \). We apply Itô’s lemma to derive the stochastic differential equation for the discounted stock value \(Z(t+\tau) = Z(t+\tau) + Z(t+\tau) = B(t+\tau) \exp(r \tau) \), \(\text{d}Z(t+\tau) = (\mu - r + \frac{1}{2}\sigma^2)\text{d}t + \sigma \text{d}W(t) \).

The equivalent martingale measure theorem (Karatzas and Shreve 1998) states that a probability measure \(Q \) can be obtained, under which the discounted stock process is a martingale. In addition, Girsanov’s theorem states that a change of measure is equivalent to a drift adjustment of the Brownian motion. The key to valuing the stock option is in finding the unique drift adjustment that turns the equation into a process with zero drift.

Define a new Brownian motion with time dependent drift \(\gamma(t) \) under the measure \(P: \text{d}W^*(t) = \text{d}W(t) + \gamma(t)\text{d}t \).

Under the new measure, the adjusted SDE reads \(\text{d}Z(t+\tau) = [\mu - r + \frac{1}{2}\sigma^2 - \gamma(t)]\text{d}t + \sigma \text{d}W^*(t) \).

The drift adjustment that turns the discounted stock process into a martingale, actually turns out to be time-independent \(\gamma = [\mu - r + \frac{1}{2}\sigma^2]/\sigma \).

This result is as anticipated. The drift adjustment leads to the well-known results from the Black-Scholes theory. In an arbitrage-free world, the original drift \(\mu \) of the equity process is replaced by the risk-neutral \(r - \frac{1}{2}\sigma^2 \).

\(\text{d}\log(S(t)) = (\mu - r - \frac{1}{2}\sigma^2)\text{d}t + \sigma \text{d}W(t) \),

\(S(t+\tau) = S(t) \exp[(\mu - r - \frac{1}{2}\sigma^2)\tau + \sigma \text{d}W^*(t)] \)

Assumptions about equity risk premiums are not relevant for the valuation of derivatives. The value \(V(t) \) at time \(t \) of a derivative that pays \(f(S_T) \) at expiry \(T \) is given by the discounted expectation of the payoff under the risk-neutral probability measure \(Q: V(t) = B(t)E_Q \left[B(T)E_E(f(S_T)) \mid E_Q \left| f(S_T) \right| S(t) \right] = e^{-r(T-t)}E_Q \left[f(S_T) \mid S(t) \right] \).
Selecting a lognormal distribution for the stock price process leads to a constant drift adjustment that turns the model into an arbitrage-free version. The distribution of the underlying process remains lognormal throughout time. Black-Scholes can be applied without adjustments, as the assumptions underlying Black-Scholes are met by the ALM model. In the following example, we examine to what extent the techniques remain valid when we start with different assumptions about the ALM model.

Example 2 – Gaussian distribution for the stock process

We look again at the stock return \(y(t) \). In some ALM-models, the distribution of the stock price is assumed to be governed by the Gaussian process \(S(t+\tau) = S(t)\exp(r\tau) \). This is best demonstrated when we adjust volatility. Yet, the scope of the analytical result is much more restricted than before. This is why the rebased stock process is a martingale if and only if the drift term \(m \) is zero. That is, if \(\gamma(t) = (\mu - r(t)+\gamma(t))/\sigma \).

Unlike in the first example, the drift adjustment is now a function of time \(t \). We introduce the shifted parameter \(\hat{x} = 1 + \hat{y} \), which is governed by the Ornstein-Uhlenbeck equation \(d\hat{x} = r\hat{x}dt + \sigma\hat{x}d\gamma(t) \).

The equation shows that the rebased stock process is a martingale if only if the drift term \(m \) is zero. That is, if \(\gamma(t) = (\mu - r(t)+\gamma(t))/\sigma \).

Table 1 – Implied lognormal volatility surface S&P500 (July 16, 2008)

<table>
<thead>
<tr>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
<th>130%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1y</td>
<td>31.51%</td>
<td>28.77%</td>
<td>26.08%</td>
<td>23.47%</td>
<td>21.09%</td>
<td>18.84%</td>
</tr>
<tr>
<td>2y</td>
<td>29.47%</td>
<td>27.44%</td>
<td>25.48%</td>
<td>23.58%</td>
<td>21.78%</td>
<td>20.13%</td>
</tr>
<tr>
<td>3y</td>
<td>28.81%</td>
<td>27.13%</td>
<td>25.50%</td>
<td>23.94%</td>
<td>22.45%</td>
<td>21.07%</td>
</tr>
<tr>
<td>4y</td>
<td>28.59%</td>
<td>27.12%</td>
<td>25.77%</td>
<td>24.35%</td>
<td>23.05%</td>
<td>21.84%</td>
</tr>
<tr>
<td>5y</td>
<td>28.57%</td>
<td>27.25%</td>
<td>25.98%</td>
<td>24.77%</td>
<td>23.61%</td>
<td>22.52%</td>
</tr>
</tbody>
</table>

Figure 2 – Adjusted Gaussian implied volatility surface S&P500

We analyze 2787 daily returns on the S&P500 between June 19, 1997 and July 17, 2008. The mean daily return is 0.009%, with a standard deviation of 1.154%. Under the assumption of normal returns, a loss of 4.6% (equal to four standard deviations) should occur approximately once every 32,000 days. In reality, such a loss occurred 4 times in 2787 days or 45 times more often than expected over the last ten years. Option traders typically compensate for this shortcoming in Black-Scholes by asking a higher implied volatility for low strike levels. The implied volatilities for options with different strike levels (ranging from 70% to 130% of the current index level) and option maturities (between one and five years). The surface is clearly skewed: the implied volatilities are much more elevated for options with a low strike than with a high strike. The skew is strongest for short dated options. The volatility ranges between 17% and 32%. The most important explanation for the existence of skew is that the theoretical assumption underlying Black-Scholes about the distribution of returns underestimates the number and impact of tail events. A simple analysis of S&P500 returns shows that a severe loss – defined as a loss of four standard deviations or more – has occurred 45 times more often than expected over the last ten years. The Gaussian and lognormal models are theoretically incompatible and should not be used in combination without proper adjustments. The following example shows the significance of the pricing error when Black-Scholes pricing formulas are applied in a Gaussian ALM-model nonetheless.

The case below is based on prices of exchange traded options on the S&P500. For these instruments, we list the Black-Scholes implied volatilities of July 16, 2008 (Figure 1). This surface contains implied volatilities for options with different strike levels (ranging from 70% to 130% of the current index level) and option maturities (between one and five years). The surface is clearly skewed: the implied volatilities are much more elevated for options with a low strike than with a high strike. The skew is strongest for short dated options. The volatility ranges between 17% and 32%. The most important explanation for the existence of skew is that the theoretical assumption underlying Black-Scholes about the distribution of returns underestimates the number and impact of tail events. A simple analysis of S&P500 returns shows that a severe loss – defined as a loss of four standard deviations or more – has occurred 45 times more often than expected over the last ten years. Option traders typically compensate for this shortcoming in Black-Scholes by asking a higher implied volatility for low strike levels.

We start with the Black-Scholes volatility matrix and determine the corresponding variance of the equity index on a one year horizon. We then solve for the implied Gaussian volatility such that the variance of the equity index on a one year horizon.

Table 2 – Adjusted Gaussian implied volatility surface S&P500

<table>
<thead>
<tr>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
<th>110%</th>
<th>120%</th>
<th>130%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1y</td>
<td>27.55%</td>
<td>25.87%</td>
<td>24.43%</td>
<td>23.18%</td>
<td>22.06%</td>
<td>21.04%</td>
</tr>
<tr>
<td>2y</td>
<td>25.81%</td>
<td>24.92%</td>
<td>24.15%</td>
<td>23.48%</td>
<td>22.88%</td>
<td>22.34%</td>
</tr>
<tr>
<td>3y</td>
<td>25.17%</td>
<td>24.56%</td>
<td>24.04%</td>
<td>23.57%</td>
<td>23.53%</td>
<td>22.77%</td>
</tr>
<tr>
<td>4y</td>
<td>24.84%</td>
<td>24.37%</td>
<td>23.97%</td>
<td>23.61%</td>
<td>23.29%</td>
<td>22.99%</td>
</tr>
<tr>
<td>5y</td>
<td>24.63%</td>
<td>24.26%</td>
<td>23.93%</td>
<td>23.63%</td>
<td>23.37%</td>
<td>23.12%</td>
</tr>
</tbody>
</table>
ance in the Gaussian and Black-Scholes model are the same. The resulting volatility surface is listed in Figure 2.

The reduction of the skew in the Gaussian implied volatility matrix is striking. For example, the 4 year Gaussian volatilities range between 23 and 25 (a difference of 2.1%) whereas the same skew difference is 7.9% for the Black-Scholes volatilities. For other times to maturity, a similar reduction is achieved. The reason for this reduction is that the Gaussian distribution resembles the fat tails in the actual S&P500 numbers more closely and therefore requires less adjustment. A consequence of this skew difference is that we would significantly misprice options. In fact, if we were to use the Black-Scholes volatilities in ALM, we would seriously overprice out-of-the-money (OTM) put options and in-the-money (ITM) call options, whereas ITM put options and OTM call options would be underpriced.

Conclusion

As derivatives become increasingly important for pension funds and insurance companies, they should be considered in studies of asset-liability management. In this paper, we show that it is not possible to simply combine existing derivatives valuation functions, like the Black-Scholes formula, with economic scenarios in the ALM model. The reason for this is that the assumptions underlying the valuation function and the economic scenario generator might be conflicting. Simply disregarding the modeling differences may lead to very serious errors and the wrong decisions being taken. In this paper, we have applied the concept of arbitrage free valuation to bridge the gap between option pricing and ALM. We have derived a continuous-time equivalent of the discrete ALM model and show how, for example, equity options and swaptions ought to be valued. Using data from the S&P500 index, we have shown that substantial skew corrections are necessary when we use a model other than geometric Brownian motion in our ALM-model.

Appendix

In this appendix we outline the technical background of the algorithm implemented to price the options in our numerical example. Our approach is based on numerical transform inversion. We used the algorithms as described in Iseger and Oldenkamp (2006). Option valuation in ALM boils down to computing \(V = E[K - \Pi_{j=1}^{N} R_j] \), where the mutually independent random variables \(R_j \) denote the returns between \(t_{j-1} \) and \(t_j \). The distributions of the returns \(R_j \) are derived from those of normally distributed random variables \(\tilde{R}_j \sim N(\mu_j, \sigma_j) \) using the following recipe: if \(\tilde{R}_j < A \), if \(B < \tilde{R}_j > A \); if \(B < \tilde{R}_j \), where \(A \) and \(B \) are given scalars.

Thus, the density function \(f_{R_j} \) of random variable \(R_j \) takes the following form: \(Pr(R_j = A) = p_A f_{R_j}(x) = N(\mu_j, \sigma_j) \); \(A < x < B \); \(Pr(R_j = B) = p_B \); \(x \). With \(p_A = Pr(\tilde{R}_j < A) \) and \(p_B = Pr(\tilde{R}_j > B) \).

The setting of the problem implies that we introduce the following random variables: \(X_j = \log(R_j) \) and \(Y_j = \sum_{k=1}^{j} X_k \). The density function \(f_{X_j}(x) = f_{R_j}(\exp(x)) \exp(x) \).

In order to determine the terminal density function \(f_{Y_N} \) of the random variable \(Y_N \) we apply Fourier transforms as follows. First, we determine the Fourier transform \(\hat{f}_{Y_N} \) of the transition density function between \(t_{j-1} \) and \(t_j \). Then, the convolution theorem states that we can express the Fourier transform of \(f_{Y_N} \) as \(\hat{f}_{Y_N} = \prod_{j=1}^{N} \hat{f}_{R_j} \).

Let us define \(h(x) \) as follows: \(h(x) = (1 - \exp(-x))I_{(x \geq 0)} \). Then we can write \(V = \int_{-\infty}^{\infty} h(kx) f_{Y_N}(x)dx \), with \(k = \log(K) \). Applying the convolution theorem once more, we express the Fourier transform of \(V \) as \(\hat{V} = \hat{f}_{Y_N}(s) \hat{h}(s) \), with \(\hat{h}(s) = 1/(s+s) \).

Finally, we compute the option price by inversion of \(\hat{V} \).

References

Does individual performance affect entrepreneurial mobility? Empirical evidence from the financial analysis market

Boris Groysberg
Associate Professor of Business Administration,
Harvard Business School

Ashish Nanda
Robert Braucher Professor of Practice and Research Director, Center for Law and the Professions, Harvard Law School

M Julia Prats
Assistant Professor of Entrepreneurship,
IESE Business School

Abstract

Our paper contributes to the studies of the relationship between workers’ human capital and their decision to become self-employed as well as their probability to survive as entrepreneurs. Analysis from a panel dataset of research analysts in investment banks over 1988-1996 reveals that star analysts are more likely than non-star analysts to become entrepreneurs. Furthermore, we find that ventures started by star analysts have a higher probability of survival than ventures established by non-star analysts. Extending traditional theories of entrepreneurship and labor mobility, our results also suggest that drivers of turnover vary by destination: turnover to entrepreneurship and other turnover. In contrast to turnover to entrepreneurship, star analysts are less likely to move to other firms than non-star analysts.

1 We would like to thank George Baker, Adam Brandenburger, Robert Gibbons, Jerry Green, Paul Healy, Josh Lerner, Jackson Nickerson, Nitin Nohria, Thomas Hellmann, Scott Stern, and Ezra Zuckerman as well as participants of the conferences/seminars at 2007 NBER JEMS Entrepreneurship conference, 2007 Utah-BYU Winter Strategy Conference, Columbia Business School, Harvard Business School, MIT, Stanford Business School, and University of Pennsylvania. Our gratitude to professionals at Goldman Sachs, Institutional Investor magazine, Lehman Brothers, Merrill Lynch, and Sanford C. Bernstein for interviews and comments on previous drafts. We also wish to thank Kathleen Ryan and James Schorr for research assistance. We gratefully acknowledge the Division of Research at the Harvard Business School for providing financial support for this study.
Are high performers more likely to become entrepreneurs than low performers? News accounts are filled with anecdotes of talented professionals making it on their own. These accounts emphasize ability as the key trigger for high performers becoming entrepreneurs and the subsequent success of their ventures ([Dorfman (1974), Milligan (1985), Kostigen (1990), Philips (1997)]. Although casual observations abound, studies that shed light on the following issues are lacking: (1) Are high performers more likely to become entrepreneurs than low performers? (2) Are high performers more likely to survive as entrepreneurs than low performers? (3) Are there differences between determinants of turnover to entrepreneurship and determinants of other turnover? The focus of our investigation is the empirical phenomenon that, among professionals, talent may be an important driver for starting one’s own firm.

To address these questions, we studied turnover data for security analysts for the nine-year period from 1988 through 1996. We matched samples of entrepreneurs and non-entrepreneurs in the same decision-making setting, and thus avoided sample selection bias. Furthermore, having non-entrepreneurs in our dataset allowed us to compare the determinants of entrepreneurial turnover to factors that affect other turnover. The availability of detailed individual and firm level data on equity analysts makes this labor market a particularly attractive setting for our analysis. Institutional Investor magazine’s annual All-America analyst rankings divide analysts into stars and non-stars, which makes it possible to make a clear distinction between high and low performers. Analysts’ rankings are externally observable, which ensures that their performance is visible to the market and makes it possible to compile rich data at five levels of analysis: individual, department, firm, sectoral, and macroeconomic. Collecting data at these various levels enabled us to control for a large range of potential drivers of turnover.

Our multilevel longitudinal dataset on equity analysts enables us to address two criticisms commonly leveled against existing empirical research in entrepreneurship, that the analysis is cross-sectional and single-level. Cross-sectional analysis is susceptible to self-selection bias because it underrepresents individuals that attempt but fail in entrepreneurial pursuits. Longitudinal observations identify more completely the expanse of entrepreneurial initiatives [Evans and Leighton (1989)]. Data limitations have precluded prior studies from controlling for both individual and situational variables as drivers of the entrepreneurial decision. In particular, the advantage of this paper is that it uses variables that are more directly related to the overall abilities of the potential entrepreneurs.

Whereas we used a number of econometric techniques (discussed later in the paper) to check the robustness of the results, the limitation of our study is that a small percentage of analysts in our sample became entrepreneurs (45 episodes). However, this paper and analysts’ dataset allow us to better understand the entrepreneurial behavior among knowledge workers, the relationship between workers’ talent and their decision to become self-employed, and their probability to survive as entrepreneurs, as well as the process of business formation among highly-skilled professionals.

By exploring the phenomenon of entrepreneurship within the context of a particular labor market, we contribute to research in entrepreneurship [Knight (1921), Schumpeter (1934), Lucas (1978), Evans and Leighton (1989), Blanchflower and Oswald (1998), Dunn and Holtz-Eakin (2000)], talent allocation [Rosen (1981)], and labor market competition [Lazear (1986)]. Finally, we shed light on new venture creation among professionals, a subject that has been explored previously only on related topics for physicians [Headen (1990), Wholey et al. (1993)], accountants [Pennings et al. (1998)], and biotechnology scientists [Zucker et al. (1998)].

Related literature
Theoretical economic models of entrepreneurial choice have generated a number of predictions. Knight (1921) suggested that the choice between operating a risky firm or working for a riskless wage is influenced by the availability of enough capital, a willingness to bear uncertainty, and entrepreneurial ability. Based on those suggestions, some theorists have modeled the occupational choice problem under the assumptions of liquidity constraints [Evans and Jovanovic (1989)], risk aversion [Kihlstrom and Laffont (1979)], and heterogeneous abilities [Lucas (1978), Jovanovic (1982), Holmes and Schmitz (1990), Jovanovic and Nyarko (1996), Lazear (2002), Irigoyen (2002), Nanda and Sorensen (2004)]. In the last 25 years, these theorists have established a significant body of research on entrepreneurship.

Central to this paper are studies that consider human capital a key factor in predicting occupational choice. More specifically, our empirical study is guided by theoretical models that point to one’s level of ability as the sorting mechanism for an individual selecting entrepreneurship [Lucas (1978), Rosen (1981), Rosen (1982), Jovanovic and Nyarko (1996), Irigoyen (2002), Nanda and Sorensen (2004)]. In his static model of size-distribution of firms, Lucas (1978) developed an equilibrium theory of talent allocation that characterized ‘managerial (or entrepreneurial) technology’ by two elements: “variable skill or talent and an element of diminishing returns to scale or to span of control” [Lucas (1978), p. 51]. For efficient allocations, he predicts, it will be the most talented only who manage new firms, and other agents under the cutoff equilibrium level will remain employees. Similarly, Rosen (1982), in his model on 2 Throughout the paper we use entrepreneurship, entrepreneurial activity, self-employment, or entrepreneurial choice as equivalent expressions. Following Evans and Leighton (1989), the self-employed category includes all sole proprietors, partners, and sole owners of incorporated business.

3 Hereafter, we use the terms ranked analysts and star analysts interchangeably to refer to analysts ranked by Institutional Investor magazine.

4 Following Schumpeter’s (1934) holistic perspective on entrepreneurship, we argue that the probability of a professional becoming an entrepreneur and her chances of success are simultaneously influenced by variables at different levels of analysis.

5 Wholey et al. (1993) studied organization formation among physicians when interests of corporate clients are strong and professional diversity leads professional groups to expand their jurisdiction by organizing. In Headen (1990), the labor and entrepreneurial components of reported physicians’ net income are separated in an analysis of input and output market performance. Pennings et al. (1998) examine the effect of human and social capital upon firm dissolution with data from a population of Dutch accounting firms. Finally, Zucker et al. (1998) find that the timing and location of the birth of biotech enterprises is determined primarily by the local number of highly productive ‘star’ scientists actively publishing genetic sequence discoveries.
Does individual performance affect entrepreneurial mobility?
Empirical evidence from the financial analysis market

the distribution of earnings, attributes choice of position (as well as skewed differences in earnings) to the latent talent possessed by each person. He writes, "... for efficiency, the scale economy of management inputs requires that the most able personnel be assigned to top level positions in very large firms" [Rosen (1982), p. 313]. Jovanovic and Nyarko (1996) use the stepping stone model to discuss the concept of mobility. The stepping stone model says that "activities that are informationally "close" will form a ladder, but the safer ones should come first: they are a natural training ground because in such activities, mistakes imply smaller foregone output" [Jovanovic and Nyarko (1996), p.29]. Finally, in his most recent model, Irigoyen (2002) proposes a dynamic model in which the most able individuals will choose to become entrepreneurs from an early age, whereas people in the middle of the distribution will work for someone else during their early employment and then switch to entrepreneurship. Zucker et al. (1998) provide empirical support for this prediction. They find that leading researchers establish their companies to capture the rents to their intellectual capital. Summarizing, these models suggest that more talented individuals will become entrepreneurs.

Likewise, there is a long tradition of empirical research in entrepreneurship that explores factors that affect the chances of a firm’s survival during the ventures’ early years. Initial economic endowments and financial access are key factors that explain new venture survival [Evans and Jovanovic (1989), Evans and Leighton (1989), Holtz-Eakin et al. (1994), Dunn and Holtz-Eakin (2000)]. Other empirical models explore the effect of human capital variables on firm survival. Age (as a proxy for human capital endowment of business founders), years of schooling, years of experience [Evans and Leighton (1989)], the founder’s social capital [Shane and Stuart (2002)], university degrees [Burke et al. (2000)], prior self-employment experience, leadership experience, and parental self-employment experience [Burke et al. (2000)] are positively related to new venture success. However, we are not aware of any study that associates a firm’s survival with an individual’s talent.

The data, variables, and aggregate statistics

The dataset

‘Sell-side’ analysts, employed by brokerage houses to follow companies in a particular industry sector or investment specialty, generate information, such as earnings forecasts and stock recommendations, and detailed research reports on the companies. Sell-side analysts’ clients are the buy-side, meaning institutional investors, which include money management firms, mutual funds, hedge funds, and pension funds. Every year in mid-October, Institutional Investor magazine publishes an "All-America Research Team" list that ranks equity analysts by sector at four levels: first, second, third, and runner-up. The editor’s letter asks voters to rank the analysts who “have been most helpful to you and your institution in researching U.S. equities over the past twelve months.” The identities of the survey respondents and the institutions they work for are kept confidential. Survey respondents give one overall numerical score to every research analyst in each industry sector. The votes are cumulated using weights based on the size of the voting institution. An analyst can be ranked in more than one sector; however, only a small percentage of analysts achieve rankings in multiple sectors. Some, but not all, star analysts in a given year continue to be ranked in subsequent years. Siconolfi (1992) writes of the exhaustive ranking process that “[t]here aren’t many other jobs in America where peoples’ performances are externally rated so specifically.”

Because institutional clients make their own buy decisions, institutional investors, as they search for specific pieces of information, value the work of an analyst on several dimensions. Clients want the analyst to add value to their decision-making process [Brenner (1991)]. When analysts’ clients were asked to rank, in order of importance, the factors that most attributed to a successful security firm, industry knowledge emerged as a solid first, followed by stock selection, written reports, special services, earnings estimates, servicing, quality of sales force, and market making/execution [Institutional Investor (1998)]. The net result of this exhaustive Institutional Investor ranking process is that the poll is a good representation of where customers find value from research analysts [Siconolfi (1992)]. Hence, the rankings are a more complete and comprehensive proxy of the analyst’s ability than the performance of stock recommendations and/or the analysts’ earnings forecast accuracy.

The market recognizes that ranked analysts perform better than their non-ranked counterparts [Stickel (1992)]. All-American ranked analysts supply more accurate earnings forecasts than other analysts and make recommendations that do not follow the crowd [Stickel (1990), Stickel (1992)]. Consequently, an Institutional Investor ranking can mean hundreds of thousands of dollars in annual pay for analysts [Laderman (1998)]. From the annual issues of Institutional Investor magazine’s "All-America Research Team" listings, we identified, for the nine-year period from 1988

6 Rosen (1981) has emphasized that “the phenomenon of superstars, wherein relatively small numbers of people earn enormous amounts of money and dominate the activity in which they engage” (p. 845) is becoming increasingly important in the modern society, particularly in the worlds of sports, arts, music, literature, medicine, law, consulting, academics, science, show business, and other professions. The combination of both the joint consumption technology and imperfect substitution allows few superstars to command very large markets and large incomes. The model might be interpreted as suggesting that individuals of extraordinary ability, superstars, are more likely to set up their own firms and, thus, capture higher rewards for their services than they were able to working for someone else.

7 Following Lucas (1978) and Rosen (1982), Irigoyen (2002) summarizes entrepreneurial activities into two categories: management (human capital intensive) and supervision or coordination (time intensive). More able entrepreneurs in this context are interpreted as better managers that also have more effective time. In his model, skills or human capital is defined as knowledge that can be innate or acquired through time.

8 The definition of survival varies enormously across studies [see Watson and Everett (1993) for a good review], challenging comparability of results across research studies.

9 For instance, in October 1996, Institutional Investor magazine produced a ranking for each of the 80 equity industry groups and investment specialties. The survey reflected the ratings of around 1,300 customers, representing approximately 68 percent of the 300 largest institutions in the U.S., as well as other investment management institutions.

10 It is not always clear whether movements in the price of certain stocks were well predicted by the analysts ex-post or whether it is their recommendations that in fact made the price move in a certain direction.

11 At most investment banks, a position on the All-America Research Team is one of the three most important criteria for determining analyst pay [Dorfman (1991)].
through 1996, 3,513 ranked equity analysts (analyst-year combinations) from 62 firms. We focused on the top 24 investment banking firms that employed more than 15 ranked analysts over the nine years covered by the study. These firms accounted for 3,408 ranked analyst names, which was 97 percent of all the analysts ranked during this period. From the annual issues of the Nelson’s Directory of Investment Research, published at the end of each calendar year, we identified 6,123 names of unranked equity analysts belonging to the top 24 firms. These firms accounted for 38 percent of the equity analysts (25,053) employed in the U.S. over the period covered by our data. The total sample of 9,531 names (analyst-year combinations) represented 2,602 individual analysts.

Although 36 percent of the analysts in our sample of 24 firms are ranked, relative to the entire security industry this proportion would be much smaller because analysts in smaller firms primarily tend to be unranked. Although our selection approach biases our data in favor of greater representation of ranked analysts, it helps us control for demographic, analyst performance, departmental, firm, sector, and macroeconomic variables because such information is more readily available for the top 24 firms. Demographic and departmental characteristics are often not available for research boutiques. By focusing on the top 24 firms, we were able to track individual analysts and identify different types of turnover: moved to entrepreneurship, moved to competitors within the research industry, or moved to companies outside the research industry. We have made the trade-off in favor of richer information for the smaller subset of the analysts belonging to the top 24 firms.

Independent variables are divided into five categories: individual variables, research department variables, firm variables, sector variables, and macroeconomic variables. Summary statistics for the variables used in the subsequent analysis are presented in panels A and B of Figure 1.

<table>
<thead>
<tr>
<th>A – Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>Probability of becoming an entrepreneur</td>
</tr>
<tr>
<td>Probability of moving</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Analyst variables</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Demographic and career variables</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Research department variables</td>
</tr>
<tr>
<td>Firm variables</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sector variables</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Security industry and macroeconomic performance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B – New venture survival variables</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 1 – Descriptive statistics of entrepreneurial turnover dataset

12 We identified 42 analysts whose names changed during the nine-year period, primarily because of the addition or change of last names subsequent to a change in marital status, so as to ensure that they were not double counted.
Dependent variables

By tracking ranked and unrated equity analysts in the subsequent year’s Nelson’s Directory of Investment Research and institutional investor listings and searching during the year the Lexis-Nexis, Institutional Brokers Estimate System (I/B/E/S), and the National Association of Security Dealers databases, we were able to identify, in each year from 1988 through 1996, whether analysts stayed with their original firms, moved to entrepreneurship, moved to competitors within the research industry, or moved to companies outside the research industry. We also identified 362 moves by analysts to other responsibilities within the same firms. Because intra-firm mobility is difficult to distinguish from inter-firm movement, prior research tends to include such moves in turnover figures. Because such moves have complex dynamics (including aspects of promotion, demotion, and job rotation) different from firm exits, we excluded these observations from our dataset.

Over the nine-year period, we identified 1,777 total moves among the 9,531 analysts for a turnover rate of 18.6 percent per annum. Of the analysts who moved, 45 made a transition to entrepreneurship, 1,673 represented other turnover (moved to competitors, laid off, retired, died, joined the firms that they had been covering for years)13. There is no discernible time trend in turnover. Summary statistics on mobility of the analysts are given in Figure 2. The variable EntrepreneurialChoiceit is “YesEntrepreneurialChoiceit” if analyst i became an entrepreneur during year t, “NoEntrepreneurialChoiceit” otherwise. In our regressions, analysts who did not become entrepreneurs are the reference group. Using EntrepreneurialChoiceit as a dependent variable confounds two different types of non-entrepreneurs: non-entrepreneurs who stayed and non-entrepreneurs who moved. Next, we distinguish between two types of moves: moves to entrepreneurship and other moves. The variable Movesit is defined to take the value of “NoMovesit” if analyst i did not move during year t, “EntrepreneurialMovesit” if analyst i became an entrepreneur during year t (identical to “YesEntrepreneurialChoiceit”), and “OtherMovesit” if the analyst i moved to a non-entrepreneurial position during year t14. The two dichotomies compare groups “EntrepreneurialMovesit” and “OtherMovesit” to “NoMovesit” to test the general hypothesis that different types of turnover have different causal antecedents.

Turnover rate to competitors is 0.5 percent per annum; 0.8 percent per annum (28 out of 3,408) among ranked analysts and 0.3 percent per annum (17 out of 6,123) among non-ranked analysts. Forty-four analysts founded money management firms, hedge funds, and research and advisory companies; one star analyst founded an airline company. All new ventures were established in the areas in which analysts specialized, suggesting that analysts attempt to leverage sector-specific skills in their entrepreneurial ventures. The reasons why only a small percentage of analysts became entrepreneurs can be found in the characteristics of their labor market15.

Finally, we introduce the VentureSurvival variable to test whether the probability of the new venture survival differs for high-ability analysts from that of low-ability analysts. VentureSurvivalit+3 is 1 if

13 Although we specifically identify analysts’ moves, we have followed analysts that move outside the industry for a year. It is possible that later on they would have moved to self-employment. However, over the nine years, we are not aware of any such case.

14 Analysis on what drives each type of move within other moves (moved to competitors, moved to buy-side, laid off, retired, died, joined the firms that they had been covering for years) lies outside the scope of this paper.

15 A number of studies report that new entrepreneurs are driven by the desire to build some equity. But analysts are able to extract their value from their employers because of the external observability of their performance (stock recommendations, earnings forecasts, and research reports). Some firms succeed in retaining their analysts by allowing them to operate as independent franchises within the firm. Analysis of turnover across the 24 firms using firm dummies (regressions are not reported) suggests significant inter-firm differences. The authors would like to thank George Baker and Robert Gibbons for offering this insight.
analyst i moved to self employment during year t and his/her new venture still exists after three years, 0 if analyst i moved to self employment during year t and his/her new venture does not exist after three years.

Individual variables
We examined a number of individual and contextual variables that are identified to be important in theoretical mobility models and empirical tests [Lucas (1978), Jovanovic (1982), Eccles and Crane (1988), Evans and Leighton (1989), Holmes and Schmitz (1990), Holtz-Eakin et al. (1994), Blanchflower and Oswald (1998), Dunn and Holtz-Eakin (2000), Irigoyen (2002), Lazear (2002), Nanda and Sorensen (2004)].

We researched issues of Institutional Investor as far back as 1972 (the first year of rankings) to trace the number of years each analyst was ranked. Hence, our sample includes analysts who have never been ranked as well as analysts who have appeared in the Institutional Investor rankings for a quarter of a century. Four hundred and twenty of the 9,531 analysts (4.4 percent of the dataset, 12.3 percent of the 3,408 ranked analysts) were ranked for the first time. On average, analysts in our dataset were ranked approximately thrice. Median star tenure was 0 years; 57.2 percent of the analysts have never been ranked. Focusing on ranked analysts only, average star tenure was 7.2 years. We collected analysts’ demographic and career characteristics (gender and number of years of experience in the industry) by conducting searches on Lexis-Nexis, the National Association of Securities Dealers web database, Institutional Brokers Estimate System, and Dow Jones News. In our sample, 76.5 percent of analysts are male16. On average, an analyst in our sample had 7.62 years of experience, worked at the same firm for 5.27 years, and held 1.59 jobs.

The independent variable AnalystStarTenurei,t is 1 if analyst i is ranked in year t. AnalystStarTenurei,t is the number of years analyst i has been ranked as of the end of year t. To distinguish further between high- and low-ability analysts, we introduce another variable. AnalystAllStar is 1 for analysts who have been stars for at least five years in prior years and are currently stars, 0 otherwise. To capture demographic and career characteristics, we define three other variables. AnalystGenderi,t is 1 if analyst i is male, 0 if female. AnalystExperiencei,t is the total number of years analyst i has worked as of October 15th of year t. AnalystJobsi,t is the number of career-related jobs analyst i has held as of October 15th of year t18.

Research department variables
The quality of the research department is operationalized according to the Greenwich Associates Institutional Research Services rankings of research departments. Every year, interviews with approximately 3,000 investment professionals are produced to produce the rankings of the best research departments. Portfolio managers and buy-side analysts are asked to name their top sources for investment ideas. Buy-side professionals are quizzed about service, products, knowledge, and the performance of brokerage houses’ sales representatives18. DepartmentQualityi,t represents the percentage of institutional clients who rate analyst i’s research department as being one of the best ten research departments in year t. An average research department quality was 30.83.

Firm variables
To estimate firm performance for all the firms in our dataset, we developed a profit proxy – the sum of equity and debt underwriting and merger and acquisition fees during the year. From Securities Data Corporation, we collected firms’ profit data based on U.S. merger and acquisition fees (based on credit to target and acquire advisors), U.S. equity underwriting gross spreads (based on credit full to each lead manager), and U.S. debt underwriting gross spread (credit full to each lead manager). These three figures are summed to generate the profit proxy for a firm for a particular year. We calculate the proportion of total profits generated by each of the 24 firms in our dataset during a particular year. To estimate change in relative profit performance, we calculate for each firm the proportionate change in this relative profit from one year to the next. On average, relative profit increased during any given year by 25.2 percent; median increase is 3.4 percent per annum. FirmPerformancei,t is the proportional change during the year preceding time t in the ratio of analyst i’s firm profits from equity and debt underwriting and merger and acquisition advisory fees to the total industry profits19. In addition, FirmDummyi,t controls for firm-level variation.

Sector variables
We grouped the sectors in 80 categories according to the Institutional Brokers Estimate System. In cases where an analyst covers more than one sector, the sector was chosen based on the number of firms an analyst tracks in one sector compared to another, as it appeared in the Institutional Brokers Estimate System database. An average sector was followed by 137 equity analysts in any given year, although there are wide variations in coverage. SectorSizei,t is the total number of equity analysts following analyst i’s sector as of year

16 First, the Census data was used to distinguish analysts’ gender. Three hundred and seventy nine analysts’ first names are used by both men and women. Thus, we looked up their interviews, press releases, and other available public information to identify the gender of those analysts.
17 Correlations among the independent and control variables highlight the following relationships. We have age data for only 42 percent of the ranked analysts. For these, age is highly correlated with analyst experience (0.55). AnalystExperiencei,t is also highly correlated with analyst firm tenure (0.73). To avoid multicollinearity among independent variables, we use AnalystExperiencei,t as not only a measure of analyst experience but also a proxy for analyst age.
18 The Greenwich Associates results are based on the total number of responses for each firm given by the survey respondents, thus favoring larger staffs with broader coverage. Departamental size is indeed highly correlated with quality (0.46).
19 We also collected firm performance data for publicly quoted investment banks by calculating for the prior year change in stock price performance deflated by changes in the Dow Jones Security Broker index. Information on stock price performance is available only for public firms (46 percent analyst-year combinations). Therefore, we use the FirmPerformancei,t variable in all subsequent analyses. Using deflated stock price performance instead yields similar regression results although, because stock price performance is available for far fewer observations than is investment banking performance, the predictive power of regressions is lower if it is used as the proxy for relative firm performance.
Does individual performance affect entrepreneurial mobility?
Empirical evidence from the financial analysis market

Industry experts assert that turnover on Wall Street varies with the nature of the sectors analysts cover; some sectors are ‘hot,’ others are not [Institutional Investor (1997, 1998)]. As sectors become hot — i.e., technological breakthrough, deregulation, globalization — the range of opportunities increases for professionals. It becomes easier for analysts to set up their own firms. To test this hypothesis, we calculate the sectors’ deflated stock market performance (the proportionate change in the stock price of the sector followed deflated by the S&P 500 index), which, on average, increases by 1.0 percent during any one year. Information on sector performance is available only for the 76 percent analyst-year combinations. Our findings contradict popular wisdom. We do not find an increase in analysts’ entrepreneurial activity when sectors are hot.

We run a robust cluster probit regression model on the panel dataset with individual analysts as clusters. The probit robust cluster model regression is particularly robust to assumptions about within-cluster correlation [Greene (2000)]. We have tested the alternative specification of random effects for the probit regressions. The results of the two specifications are quite similar. Because there are 45 moves to entrepreneurship among the 9,531 analyst-year observations, we implemented the procedures suggested in King and Zeng (1999a; 1999b) for generating approximately unbiased and lower-variance estimates of logit coefficients (available only for logit models) and their variance-covariance matrix by correcting for small samples and rare events. Regression results are similar to the robust cluster probit models (we only report the latter).

<table>
<thead>
<tr>
<th>Class</th>
<th>Variable</th>
<th>(1) Coefficient</th>
<th>(df/dx)</th>
<th>(2) Coefficient</th>
<th>(df/dx)</th>
<th>(3) Coefficient</th>
<th>(df/dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stardom</td>
<td>Analyst Star</td>
<td>0.389***</td>
<td>(0.150)</td>
<td>0.007*</td>
<td></td>
<td>0.376***</td>
<td>(0.132)</td>
</tr>
<tr>
<td></td>
<td>AnalystAllStar</td>
<td>0.338**</td>
<td>(0.143)</td>
<td></td>
<td></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Demographic variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AnalystGender</td>
<td>0.386**</td>
<td>(0.197)</td>
<td>0.005*</td>
<td></td>
<td>0.430**</td>
<td>(0.187)</td>
</tr>
<tr>
<td></td>
<td>AnalystExperience</td>
<td>-0.012</td>
<td>(0.022)</td>
<td>0.000</td>
<td></td>
<td>-0.008</td>
<td>(0.021)</td>
</tr>
<tr>
<td></td>
<td>AnalystExperience2</td>
<td>0.000</td>
<td>(0.001)</td>
<td>0.000</td>
<td></td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AnalystJobs</td>
<td>0.089</td>
<td>(0.064)</td>
<td>0.001</td>
<td></td>
<td>0.103*</td>
<td>(0.060)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research department variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DepartmentQuality</td>
<td>-0.002</td>
<td>(0.004)</td>
<td>0.000</td>
<td></td>
<td>-0.002</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Firm variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FirmDummy</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FirmPerformance</td>
<td>-0.055</td>
<td>(0.039)</td>
<td>-0.001</td>
<td></td>
<td>-0.057</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Sector variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SectorDummy</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SectorSize</td>
<td>0.001</td>
<td>(0.001)</td>
<td>0.000</td>
<td></td>
<td>0.001</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Macroeconomic performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>YearDummy</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S&P500Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-3.204***</td>
<td>(0.242)</td>
<td>-0.005</td>
<td></td>
<td>-0.517***</td>
<td>(0.474)</td>
</tr>
<tr>
<td></td>
<td>Log (likelihood)</td>
<td>-219.534</td>
<td>-254.482</td>
<td>-255.614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. of observations</td>
<td>4563</td>
<td>7712</td>
<td>7712</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*statistically significant at the .10 level; ** at the .05 level; *** at the .01 level.

a dF/dx is for discrete change of the dummy variable from 0 to 1.

Figure 3 – The effect of stardom on the probability of moving to entrepreneurship.

Stardom and entrepreneurial choice

We estimate the probability of an analyst becoming an entrepreneur as a function of analyst stardom, individual, firm, sector and macroeconomic variables. We use the following probit model specification:

\[
P(\text{EntrepreneurialChoice}_{it+1}) = a + \beta_1 \times \text{AnalystStar}_{it} + \beta_2 \times \text{AnalystGender}_{it} + \beta_3 \times \text{AnalystExperience}_{it} + \beta_4 \times \text{AnalystExperience2}_{it} + \beta_5 \times \text{AnalystJobs}_{it} + \beta_6 \times \text{FirmDummy}_{it} + \beta_7 \times \text{SectorDummy}_{it} + \beta_8 \times \text{YearDummy}_{it} + \epsilon_{it+1}
\]

Models and results

Stardom and entrepreneurial choice

We estimate the probability of an analyst becoming an entrepreneur as a function of analyst stardom, individual, firm, sector and macroeconomic variables. We use the following probit model specification:

\[
P(\text{EntrepreneurialChoice}_{it+1}) = a + \beta_1 \times \text{AnalystStar}_{it} + \beta_2 \times \text{AnalystGender}_{it} + \beta_3 \times \text{AnalystExperience}_{it} + \beta_4 \times \text{AnalystExperience2}_{it} + \beta_5 \times \text{AnalystJobs}_{it} + \beta_6 \times \text{FirmDummy}_{it} + \beta_7 \times \text{SectorDummy}_{it} + \beta_8 \times \text{YearDummy}_{it} + \epsilon_{it+1}
\]
Column (1) in Figure 3 presents a regression that estimates the probability of becoming an entrepreneur as a function of analyst stardom, individual, firm, sector, and macroeconomic variables. The regression controls for all firm-specific, sector-specific, and intertemporal variations by using firm, sector, and year dummies in the regressions. AnalystStar has a significant positive coefficient (p < 0.01). Being ranked by Institutional Investor magazine increases the probability of becoming an entrepreneur with a marginal effect of 0.7 percent over the mean (0.5 percent). Being male increases the probability of becoming an entrepreneur (p < 0.05) at the mean by 0.5 percent. AnalystExperience and AnalystJobs have insignificant coefficients.

Column (1) of Figure 3 conducts a stringent test of the influence of stardom on the probability of analyst turnover by using firm, sector, and year dummies in the regressions. Column (2) estimates the probability of becoming an entrepreneur as a function of analyst stardom, and a variety of departmental (the quality of the research department), firm (firm performance), sector (sector size), and macroeconomic (macroeconomic performance) variables. The estimating equation for column (2) is (2).

\[
P(\text{EntrepreneurialChoice}_i,t) = \alpha + \beta_1 \times \text{AnalystStar}_i,t + \beta_2 \times \text{AnalystGender}_i,t + \beta_3 \times \text{AnalystExperience}_i,t + \beta_4 \times \text{AnalystExperience}^2_i,t + \beta_5 \times \text{AnalystJobs}_i,t + \beta_6 \times \text{DepartmentQuality}_i,t + \beta_7 \times \text{FirmPerformance}_i,t + \beta_8 \times \text{SectorSize}_i,t + \beta_9 \times \text{S&P500Performance}_i,t + \epsilon_{i,t+1}
\]

Results in column (2) of Figure 3 for individual variables are; AnalystStar remains positive and significant (p < 0.01). The research department variable, DepartmentQuality, is not significant. We also find that firm performance does not significantly influence the probability of analyst turnover to entrepreneurship. The sector variable also does not have a significant coefficient. At the macroeconomic level, we find that the probability of analyst entrepreneurial turnover is not sensitive to the proportional change in the S&P 500 index.

Finally, to further distinguish between different analysts’ ability levels, we substitute AnalystStar by AnalystAllStar. Analysts who are repeatedly ranked by Institutional Investor magazine are considered all-stars because they are able to sustain their performance over a period of time. This is a stronger test on whether analysts’ performance affects their probability of becoming entrepreneurs. Regression results are shown in column (3) of Figure 3. AnalystAllStar has a significant positive coefficient (p < 0.05). Hence, established all-star performers tend to have a greater propensity to become self-employed. The predicted probability of exit at the mean is 0.4 percent. Being an all-star increases the probability of turnover to entrepreneurship by 0.6 percent at the mean. The results for other variables remain largely unchanged.

Overall, our results suggest that analysts’ ability and gender (individual factors) influence turnover to entrepreneurship. Entrepreneurship, however, is not driven by situational variables; for example, at the department level by quality, at the firm level by performance, at the sector level by size, or at the macroeconomic level by performance.

Entrepreneurial analysts identified the following categories of motives for their departures: the urge to broaden their account base (strict limitations at the former firms on what sectors and companies to cover); the desire to put their own stamp on the organization by building a firm based on their values; to obtain the freedom of investment thought (independence from politics of the firm); the chance for the analysts to make more money and capitalize on their talents; the burnout factor of their former research jobs (the long hours, the marketing demands, the travel, the pressure to generate the investment banking deals); and personally conflicts. A number of stars indicated that they decided to become entrepreneurs after evaluating their life accomplishments, with many stating that they reached a point in their lives where they knew if they did not make the break, they never would and would later regret it.

In supplemental analysis, we also control for relative analyst accuracy, absolute analyst accuracy, and visibility.

Relative accuracy – we estimated analysts’ average earnings forecast accuracy during the sample period using the same measure of relative forecast accuracy as Hong et al. (2000) and Hong and Kubik (2003). For each company and quarter that an analyst issued an earnings forecast, we ranked the analyst on forecast accuracy relative to all other analysts from the IBES dataset covering the same company and quarter. When an analyst issued multiple forecasts for the same company-quarter, we selected the latest forecast to estimate forecast accuracy ranking. Percentile ranks (ranging from a low of 0% for the least accurate analyst to 100% for the most accurate analyst) were constructed using the following: Percentile Rank\(_{jt}\) = 100 - \(((\text{Rank}_{jt} - 1)/(\text{Company Coverage}_{jt} - 1)) \times 100\), where Rank\(_{jt}\) is analyst j’s forecast accuracy rank for firm i in quarter t, and Company Coverage\(_{jt}\) is the number of analysts issuing forecasts for firm i in quarter t. The Percentile Rank estimates are then averaged across firms and quarters covered by the analyst to provide an average measure of an individual’s relative forecast accuracy. The IBES data is less complete than the Nelson database. The number of observations

22 The number of observations decreases with the introduction of the analyst demographic variables (AnalystExperience and AnalystJobs). Even after using multiple sources to collect the experience information, analyst experience and analyst job data were available for 8,112 analyst-year combinations (85 percent). Thus, to properly test whether analyst stardom has an effect on analysts’ mobility, we rerun models in columns (1) through (2) of Figure 3 without the AnalystExperience and AnalystJobs variables. The new regressions have similar results to the respective models in Figure 3.

23 Previous studies have found that the wealth of the agent affects the probability of becoming an entrepreneur. Wealth would be positively related to riskier decisions, such as becoming an entrepreneur. However, other studies did not find that correlation. Indeed, in their study on Indian farmers, Foster and Rosenzweig (1995) find that change from one crop to a riskier crop could not be explained by wealth effects. Instead, it is explained by their ability of dealing with external markets. Although, our model does not include variables that capture the financial position of the analyst (because there is no information available on the personal wealth of analysts), we believe that the decision of becoming an entrepreneur in a talent-based occupation is closer to the idea of mastering the environment than by the comfort of a wealthy position. New ventures in a professional setting do not require great investments, they require a great deal of personal confidence and client/market understanding.
Does individual performance affect entrepreneurial mobility? Empirical evidence from the financial analysis market

drops as we try to match the IBES dataset to the analyst observations. However, when this variable is included in our regressions, it is not statistically significant.

Absolute accuracy – we also constructed a measure of the absolute forecast accuracy of an analyst following the Hong et al. (2000) and Hong and Kubik (2003) methodologies. We measured the analyst’s accuracy for a particular firm in a given year by focusing on the absolute difference between his/her forecast and the actual earning per share figure of the firm. The absolute difference was scaled by the stock price. Because analysts follow multiple firms, we aggregated this forecasting accuracy measure across all the firms that an analyst covers. Similar to Hong et al. (2000) and Hong and Kubik (2003), we aggregate the average forecast errors for all firms for the three previous years compared to doing it for one year because some analysts cover few firms and, therefore, these analysts’ measures are noisy if they are done for one year. After including this measure in our regressions, the absolute accuracy variable is not statically significant.

Visibility – one alternative explanation is that star analysts are more visible and, therefore, exposed to more business opportunities. We focused on press coverage to measure analysts’ visibility. All press searches were performed in Factiva, which covers all major wire services and major, national, and regional publications. For each year and for every analyst, we obtained the number of press articles. Examining the effect of the press coverage on entrepreneurial turnover, we find that the relationship is not significant.

An analyst’s absolute and relative forecasting ability, as well as visibility, has no effect on their decision to start a new firm. AnalystStar remains positive and significant (p < 0.01). The stardom variable might be capturing important dimensions that are significant for entrepreneurship: client service and accessibility, industry knowledge, and the quality of written reports.

In the next section, we examine whether drivers of entrepreneurial turnover are different from factors that determine other movements.

Stardom and all moves

As we mentioned earlier, using EntrepreneurialChoice as a dependent variable confounds two different types of non-entrepreneurs: non-entrepreneurs who stayed and non-entrepreneurs who moved. In this section we conduct the analyses with a different dependent variable, Moves. We assume three nominal outcomes: where “NoMoves” means no turnover, “EntrepreneurialMoves” represents turnover to entrepreneurship, and “OtherMoves” represents turnover to non-entrepreneurial positions. The Moves variable allows us to test whether different types of turnover have different causal antecedents. In Figure 4, the estimating equations for columns (1) through (6) are equations (1), (2), (3) of Figure 3 respectively with the new dependent variable.

An examination of turnover to entrepreneurship in columns (1) through (3) of Figure 4 shows all variables having coefficients similar in significance and magnitude to those in Figure 3. However, examining other turnover (to non-entrepreneurial positions) in column (4), we find that AnalystStar has a significant negative coefficient (p < 0.01). Being a star decreases the probability of moving to another firm with a marginal effect of 4.4 percent over the mean (at which predicted exit probability is 13.7 percent). Hence, in contrast with what we found for movements to entrepreneurship, high performers are less likely to move to competitors than low performers. AnalystExperience has a significant negative coefficient (p < 0.01), whereas AnalystJobs has a significant positive coefficient (p < 0.05). Each additional year of experience reduces the analyst’s turnover probability by 0.6 percent at the mean.

Analysts’ past movements determine their current propensity to move. Each additional job that an analyst held in the past increases the analyst’s turnover probability by 1.1 percent at the mean. AnalystGender has a significant negative coefficient (p < 0.05). Women have a greater propensity than men to exit firms. Being male reduces the probability of turnover to another firm by 1.1 percent at the mean.

In examining other turnover in column (5) of Figure 4, the results for individual variables remain largely unchanged from column (4). In contrast with the results for movements to entrepreneurship, the coefficient of DepartmentQuality is negative and significant (p < 0.01), indicating that analysts working in a better department have a lower propensity to exit. A 1 percent increase in the percentage of institutional clients who rate the brokerage house as having one of the best ten research departments reduces the probability of exit at the mean by 0.2 percent. At the firm level, in contrast to entrepreneurial turnover, firm performance significantly influences the probability of analyst turnover. Good investment banking performance by a firm in the preceding year (FirmPerformance) reduces the probability of analyst turnover (p < 0.05). For a 10 percent negative change in the firm performance, the probability of analyst turnover increases by 0.09 percent. Finally, as we found for moves to entrepreneurship, the sector and macroeconomic variables do not have significant coefficients.

Finally, column (6) of Figure 4, which presents the regression results of other moves, yields very different results than the self-employed model in column (3) of the Figure. AnalystAllStar has a significant negative coefficient (p < 0.01). Being an all-star reduces the probability of turnover to competitors by 6.6 percent at the mean (14.5 percent). Hence, established all-star performers are more likely to stay with their firms or choose entrepreneurship.

24 A nominal dependent variable can be analyzed via a multinomial logistic regression. Whereas recent results on simulation of multinormal integrals have made the estimation of the multinomial probit more feasible, the computational problems still persist. Although there are theoretical differences between logit and probit methodologies, probit and logit yield results that are essentially indistinguishable from each other, and the choice of one over the other appears to make virtually no difference in practice (Greene (2000)). We find that the estimates from the binary regression are close to those from the multinomial logit model. Thus, we use a probit model to estimate our equations with the reference group being analysts who did not move.
Does individual performance affect entrepreneurial mobility? Empirical evidence from the financial analysis market

Comparing entrepreneurial turnover with other turnover, we document that there are differences in factors that drive these two different types of mobility. In fact, when characteristics of these two types of turnover are examined, the same variables change signs (ability and gender). Situational drivers (department, firm, sector, macro economy) do not drive turnover to entrepreneurship; only ability and gender do. In contrast, situational drivers (department and firm) as well as individual ones (ability, experience, prior mobility, and gender) drive other turnover. Our findings suggest that studies that do not differentiate between different types of mobility might be documenting less precise relationships between drivers of turnover and workers’ mobility.

The determinants of new venture survival

We estimate the probability of the new venture survival as a function of the independent variable (performance) and three classes of control variables (demographic factors and macroeconomic factors). We use the following probit model specification:

\[P(\text{VentureSurvival}_{i,t+3}) = \alpha + \beta_1 \times \text{AnalystStar}_{i,t} + \beta_2 \times \text{AnalystGender}_{i,t} + \beta_3 \times \text{AnalystExperience}_{i,t} + \beta_4 \times \text{S&P500Performance}_{i,t} + \epsilon_{i,t+3} \]

We find it appropriate to use a probit model instead of a hazard rate model given the way we have defined the survival variable. The hazard rate is the conditional likelihood that firm failure occurs at duration time t, given that it has not occurred in the duration interval (0,t). In contrast, a probit model considers the likelihood that firm failure occurs during the study period (ignoring the duration of the interval). In other words, the probit model considers whether the firm will fail during the study period, rather than when the firm will fail. We are interested on the probability of survival of the firm three years after founding.

*statistically significant at the .10 level; ** at the .05 level; *** at the .01 level.

Note: Robust standard errors are in parentheses and are adjusted for intra-analyst correlation of the errors.
a dF/dx is for discrete change of the dummy variable from 0 to 1.

Figure 4 - The effect of stardom on analysts’ transition probability

<table>
<thead>
<tr>
<th>Class</th>
<th>Variable</th>
<th>EntrepreneurialMoves</th>
<th>OtherMoves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient [dF/dx]</td>
<td>[dF/dx]</td>
<td>Coefficient [dF/dx]</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Analyst variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stardom</td>
<td>AnalystStar</td>
<td>0.388*** (0.51)</td>
<td>0.008a (0.34)</td>
</tr>
<tr>
<td></td>
<td>AnalystAllStar</td>
<td>0.199** (0.144)</td>
<td>0.006a (0.144)</td>
</tr>
<tr>
<td></td>
<td>AnalystGender</td>
<td>0.380* (0.202)</td>
<td>0.005a (0.191)</td>
</tr>
<tr>
<td></td>
<td>AnalystExperience</td>
<td>-0.014 (0.022)</td>
<td>0.000 (0.022)</td>
</tr>
<tr>
<td></td>
<td>AnalystExperiencea</td>
<td>0.000 (0.001)</td>
<td>0.000 (0.001)</td>
</tr>
<tr>
<td></td>
<td>AnalystJobs</td>
<td>0.095 (0.065)</td>
<td>0.001 (0.061)</td>
</tr>
<tr>
<td>Research department variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DepartmentQuality</td>
<td>-0.004 (0.004)</td>
<td>0.000 (0.004)</td>
</tr>
<tr>
<td>Firm variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Firm Dummy</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>FirmPerformance</td>
<td>-0.062 (0.039)</td>
<td>-0.001 (0.039)</td>
</tr>
<tr>
<td>Sector variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sector Dummy</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>SectorSize*100</td>
<td>0.076 (0.060)</td>
<td>0.001 (0.061)</td>
</tr>
<tr>
<td>Macroeconomic performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year Dummy</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>S&P500Performance</td>
<td>-0.457 (0.478)</td>
<td>-0.007 (0.482)</td>
</tr>
<tr>
<td></td>
<td>Constant</td>
<td>-3.094*** (0.248)</td>
<td>-3.094*** (0.253)</td>
</tr>
<tr>
<td></td>
<td>Log (likelihood)</td>
<td>-212.89</td>
<td>-249.94</td>
</tr>
<tr>
<td></td>
<td>No. of observations</td>
<td>3893</td>
<td>6531</td>
</tr>
</tbody>
</table>

25 We find it appropriate to use a probit model instead of a hazard rate model given the way we have defined the survival variable. The hazard rate is the conditional likelihood that firm failure occurs at duration time t, given that it has not occurred in the duration interval (0,t). In contrast, a probit model considers the likelihood that firm failure occurs during the study period (ignoring the duration of the interval). In other words, the probit model considers whether the firm will fail during the study period, rather than when the firm will fail. We are interested on the probability of survival of the firm three years after founding.
Does individual performance affect entrepreneurial mobility? Empirical evidence from the financial analysis market

The model in Figure 5 presents a regression that estimates the probability of survival in three years as a function of analyst stardom, individual, and macroeconomic variables. The estimated coefficient on AnalystStar is positive and significant (p < 0.05). Hence, being ranked by Institutional Investor increases the probability of venture survival after an analyst becomes an entrepreneur with a marginal effect of 40.5 percent over the mean (45.9 percent)\(^{(a)}\). New ventures found by more capable analysts have a higher probability of survival for three years\(^{(a)}\). Finally, we find that the greater the expansion of the U.S. economy, the higher the probability of venture survival after analysts become entrepreneurs. The estimated coefficient for the S&P 500 performance (t=0 to t+3) variable is positive and significant (p < 0.01). For a 10 percent proportional positive change in the S&P 500 index during a particular three-year period, the probability of an analyst’s entrepreneurial success increases by 7.0 percent over the mean. Overall, our results suggest that an analyst’s ability and performance of the economy influence venture’s survival.

Conclusion

Many economists and social scientists agree that entrepreneurship has become an important phenomenon in our society. However, few studies have examined empirically the entrepreneurial activity in the professional service industries. Furthermore, no empirical studies explore the effects of workers’ ability on entrepreneurial activity. In this paper, we examine the effect of workers’ ability on probability of their entrepreneurial turnover and subsequent survival of new ventures. We also control for potential drivers of turnover besides performance at five levels: demographic, departmental, firm, professional specialization, and macroeconomic characteristics. We offer new evidence on the determinants of turnover to entrepreneurship and the factors affecting survival of new ventures in the context of a professional service industry.

Analysis of entrepreneurial efforts from a panel dataset of equity research analysts in investment banks over the period 1988-1996 reveals that star analysts are more likely than non-star analysts to become entrepreneurs. We also find that ventures founded by star analysts have a higher probability of survival in three years than non-star analysts, and the probability of survival is procyclical with the performance of the economy.

Many empirical studies of employee turnover treat all exits from a firm alike. We have found that turnover to entrepreneurship has different dynamics from other turnover. Hence, theoretical models as well as empirical studies of turnover of workers should disentangle the different types of turnover by destination. In contrast to entrepreneurial turnover, we find that star analysts are less likely than their non-star counterparts to experience other turnover; more experienced analysts are less likely to exit their firms than less experienced analysts; being male decreases the probability of other turnover; analysts’ past movements increase their current propensity to move; the probability of other turnover is greater for lower-rated research departments; and other turnover is anticyclical with the performance of the firm.

This study contributes to several recent lines of research. Our results empirically support Lucas’ (1978) theoretical prediction that the relatively more talented workers become entrepreneurs. Furthermore, our findings are consistent with the works of Zucker et al. 1998 that leading professionals found companies to earn rents on their intellectual capital. Also, supporting prior studies (Blanchflower and Oswald (1998)), we find that being male increases the probability of turnover to entrepreneurship. By exploring the phenomenon of turnover within the context of professionals in the labor market of equity security analysts, the paper also contributes to research in talent allocation (Rosen (1981)) and labor market competition (Lazear (1986)).

One limitation of this paper is that the sample includes a restricted class of agents, security analysts. Future research conducted in different settings would be helpful to confirm the relationship between ability and entry and exit from entrepreneurship. Comparing the entrepreneurial turnover pattern of equity analysts with the turnover dynamics of engineers, software programmers, money managers, and other professionals could help test the generalization of our conclusions across various professions.

Our findings have implications for the allocation of resources by policy-makers and other institutions promoting entrepreneurial activity. Our findings have implications for human resource practi-
Does individual performance affect entrepreneurial mobility?
Empirical evidence from the financial analysis market

tioners as well. Whereas firms try to minimize turnover to competitors, at the same time, they might be maximizing entrepreneurial turnover. To our knowledge, no study has been able to establish what mobility is more damaging to the firm. We believe that it is an important question for future research.

References
- Knight, F., 1921, Risk, uncertainty and profit, H H, New York
- Sticken, S. E., 1990, “Predicting individual analyst earnings forecast,” Journal of Accounting Research, 28, 409-17
A new approach for an integrated credit and market risk measurement of interest rate swap portfolios

John Hatgioannides
Chair in Mathematical Finance and Financial Engineering, and Director, MSc in Mathematical Trading and Finance, Cass Business School

George Petropoulos
Senior FX Trader, EFG Eurobank

Abstract
In this paper we develop a new methodology to simultaneously measure the credit and market risk arising from an interest rate swap portfolio. Based on a dynamic hedging methodology, which uses credit spread index options to hedge swap exposures, the probability of default is embedded in the credit spread option price. The end result is a creation of a portfolio of swaps and credit spread options that, when rebalanced continuously, has zero default risk. It is only the market value of such a combined portfolio that is sensitive to both market and credit risk factors. Our approach has important implications for the implementation of the standard paradigm of integrated risk measurement. Most notably, since the credit part of our combined portfolio is linked to the potential credit exposure of the swap portfolio through its notional and the probability of default is represented by the price of the credit spread option, we are not relying at all on the probabilities of default in the calculation of the total expected economic loss. We empirically illustrate our approach using an active swaps portfolio taken from a medium-sized European bank and compare our findings with the standard model.
A new approach for an integrated credit and market risk measurement of interest rate swap portfolios

Ever since the 1998 Bank of International Settlements (BIS) accord, financial institutions are allowed to use their own internal risk models to measure credit and market risk according to a VaR-style methodology. However, the enhanced integration of financial markets, the increased complexity of financial products, and the huge growth of transactions all highlighted the inadequacies of such an avenue. The 1999 Capital Adequacy Directive conceptual paper suggested that financial institutions need to integrate risk measurement across the trading and banking book to ensure that risk is consistent with an overall minimum regulatory capital requirement.

The standard paradigm advocated by regulators and invariably used by financial institutions to calculate total economic loss due to credit risk relies on the concepts of expected and unexpected loss. The expected loss is governed by the distribution of three major factors, namely, the credit exposure, the default rate, and the recovery rate. Typically, one integrates across the joint distribution function of these factors to get an estimate of the expected loss at a given point in time. The unexpected loss is represented by some measure of the volatility of the expected loss within a prescribed confidence interval. There are a number of well documented methodological, statistical/computational/calibration and implementation issues of the standard model.

In this paper we focus on interest rate swaps, the most actively traded instrument in the over-the-counter interest rate market, which bear substantial default risk. Integration of risks in practice comes from the allocation of credit lines per counterparty, or the so-called counterpart exposure limits. These limits are being set mainly on credit grounds.

In sharp contrast to popular implementations of the standard model, in our proposed methodology for an integrated measurement of credit and market risk, the notoriously unstable probabilities of default do not directly come into the fore. Based on a dynamic hedging methodology which uses credit spread index options to hedge swap exposures, the probability of default is embedded in the credit spread option (henceforth, CSO) price. Our main idea is that as the exposure fluctuates, so is the amount of options required to hedge a given exposure. Furthermore, as the credit spread widens, the moneyness of the call options used to hedge the credit exposure increases, thus protecting it from an increasing probability of default. The end result is the creation of a portfolio of swaps and credit spread options that has zero default risk when rebalanced continuously and with only the market value distribution of such a combined portfolio being sensitive to both market and credit risk factors. The credit part of the portfolio is linked to the potential credit exposure of the swap portfolio through its notional and the probability of default is represented by the price of the credit spread option.

For valuation purposes of credit spread options, we rely on the recently developed two-factor ‘spread-based’ model of Hatgioannides and Petropoulos (2006), which provides a unified framework for pricing both interest rate and credit sensitive securities.

The main idea

Assuming that a dealer wants to hedge the default risk of a swap portfolio, the first step would be to examine the sensitivity of the aggregate swap exposures per credit spread. Unlike corporate bonds though, credit risk does not enter directly in the pricing equation of interest rate swaps. Consequently, it is not as straightforward to find out the sensitivity of interest rate swaps to credit spread movements as it is for bonds. Nevertheless, one can confidently say that as the swap exposure increases so is the credit exposure and thus credit risk. What can also be argued is that when there is a credit spread widening, credit risk increases even if the swap exposure has not changed at all. Based on this rationale, the dealer who would like to hedge his swaps credit risk in a dynamic setting may take an offsetting position in the respective credit spread of the counterparty. This can be achieved by using credit derivatives, and in this paper we are pointing to credit spread index options, which securitize the future widening or tightening of a credit spread index. In that way, even if the swap exposure remains unchanged and credit spreads widen, the current exposure remains default-risk free.

In the development of our new approach, we are relying on the following four working assumptions: (A1) since we will be using credit spread indices instead of counterpart credit spreads, we assume that the credit spread of a counterpart is perfectly correlated to the respective credit index; (A2) counterparties of the same rating have the same rating transition probabilities; (A3) the credit risk of the option seller is considerably smaller than the credit risk generated by the swap portfolio; and (A4) the financial institution that holds the hypothetical swap portfolio has netting agreements with all counterparties.

The first step in implementing our methodology is to adhere to the typical practitioners’ approach, such as splitting the entire swap portfolio into sub-portfolios according to each counterpart’s rating. The next step is to measure the total potential exposure that each sub-portfolio is expected to have, given a confidence interval. This can be achieved by running, for example, a historical simulation for each sub-portfolio, denoted by (i). The total potential exposure is then the sum of the current mark-to-market (MTM) plus, for example in the case of a 3-month (3M) reporting period, the 3M VaR of each sub-portfolio. Having calculated the aggregate exposure, we adjust it by an exogenously given recovery rate to derive the number of credit spread index options required to hedge the default risk of the given swap exposure. In that way, the option notional is

2 Previous attempts to integrate credit and market risk include Cossin and Piratte (1998), Mozumdar (2001), Barnhill et al. (2002), and Medova and Smith (2003).

3 Alternatively, one may use the more liquid (at least at present) credit default swaps (CDS). However, CDSs, being linear-type credit derivative contracts, do not securitize the volatility of credit spreads, which is naturally being done in non-linear structures such as credit spread options.

4 Even in cases where swap exposures decline and eventually become negative, in which case one over-hedges, if the credit spread widens the result could still be positive.

5 The four assumptions by and large bear support in the relevant literature and do not undermine the justification and, more importantly, the possible implementation of our approach by financial institutions.
A new approach for an integrated credit and market risk measurement of interest rate swap portfolios

linked to the total swap exposure of the portfolio over the 3-month reporting period. In short,

\[\text{SwapMTM} + \text{SwapVaR(3M)} = \text{Total potential exposure (3M)}; \text{Option notional} = \frac{\text{Total potential exposure (3M)}}{\text{3M Credit spread index option price (2.1)}} \]

The maturity of the credit spread index (underlying asset) and the strike price of the option are two important parameters in implementing our methodology. We propose that the maturity of the underlying index is matched, as closely as possible, with the maturity of the biggest swap exposure in each of the sub-portfolios.

The strike of the option is a parameter which greatly affects both the cost of hedging and the diversification of credit risk. Since credit spreads may be deemed as mean-reverting quantities [Pedrosa and Roll (1998), Hatgioannides and Petropoulos (2006)], the strike of the option should be closely related to the long-term mean of the credit spread index. In that way, the option will be out-of-the-money if credit spreads are low and in-the-money if credit spreads are high, reflecting the level of risk in credit markets. In other words, our technique creates a combined portfolio of swaps and credit spread index options. The market value of such a portfolio is essentially affected by changes in market rates (market risk) and the levels of the credit spread (credit risk). The key result is that if one runs a historical simulation VaR on that portfolio then an integrated measure of risk can be readily obtained:

\[\text{Integrated VaR}_i = \text{Market VaR}_i \text{ of Swaps} + \text{Market VaR}_i \text{ of CSOs (2.2)} \]

\(i = \) counterpart rating

The first term of the above expression represents the ‘predicted’ P/L of the swap portfolio of rating (i) due to market risk. The second term represents the amount of default risk that the specific swap exposure runs.

The calculation of economic capital
Economic capital represents the amount that needs to be set aside as a provision for the credit risk exposures created by financial securities either in the banking or the trading book.

The standard approach
There are two measures that are typically employed by financial institutions to calculate the total economic loss due to credit risk, the expected loss and the unexpected loss. The expected loss (EL), at a given point in time, is given by the joint distribution of three key variables, the credit exposure, the default rate, and the recovery rate:

\[\text{EL} = \int \int \int (\text{CE})(\text{PrDef}) (1-\text{RR}) F(\text{CE}, \text{PrDef}, \text{RR}) d\text{CE} d\text{PrDef} d\text{RR} \quad (3.1) \]

where, CE is the credit exposure, PrDef stands for default rate, RR is the recovery rate, and \(F(\text{CE}, \text{PrDef}, \text{RR}) \) is the multivariate probability function of the three variables. Assuming statistical independence between CE, PrDE and RR, a very questionable assumption we have to say but nevertheless widely adopted in practice to arrive at a manageable specification, we obtain for a single exposure: \(\text{EL} = E(\text{CE}) * (1-\text{RR}) * \text{Pr(Def}(t_i, t_{i+1})) \) (3.2)

Similarly, the unexpected loss (UL) for a binomial event of a single exposure is given by:

\[\text{UL} = \text{ECE} * (1-\text{RR}) * \sqrt{\text{Pr(Def}(t_i, t_{i+1}))(1-\text{Pr(Def}(t_i, t_{i+1}))} \quad (3.3) \]

which represents the volatility of the expected loss at a given confidence interval.

The integrated approach
In our vision for the calculation of economic capital, the major difference to current practices is that we do not explicitly rely on default probabilities. Instead, by adopting a dynamic hedging methodology, which uses credit spread index options to hedge swap exposures, the probability of default is embedded in the credit spread option price.

The intuition is that as the exposure fluctuates, so is the amount of options required to hedge it [see expression (2.1)]. Also, as the credit spread widens, the moneyness of the call options used to hedge the credit exposure increases, acting as a shield for an increasing probability of default. The end result is the creation of a portfolio of swaps and credit spread options which, when rebalanced continuously, has zero default risk. Crucially, the market value distribution of that combined portfolio is sensitive to both market and credit risk factors.

The economic capital calculation for such a portfolio then becomes the sum of the expected and unexpected loss due to the credit part of the portfolio. This follows from the fact that the credit part of the portfolio is linked to the potential credit exposure of the swap portfolio through its notional and the probability of default is represented by the price of the credit spread option.

The process of using credit spread options in order to ‘replace’ economic loss of a swap sub-portfolio turns out to be quite appealing. By running a historical simulation to the credit part of the portfolio, the expected loss (EL) of the swap sub-portfolio equates to the mean of the resulting distribution and the unexpected loss (UL) to its standard deviation:

\[\text{EL} = \text{mean of MTM of credit spread index option; UL} = \text{Standard deviation of MTM of credit spread index option (3.4)} \]
In this way, the modeling of the probabilities of default is being done through the same analytic framework used to price both swaps and credit spread options, ensuring internal consistency in the operations of the financial institution.

An empirical illustration

The interest rate swap portfolio
An actual swap portfolio was provided by a medium-sized European bank with a substantial business in the euro (EUR) swap markets. The swap portfolio contains 53 vanilla interest rate swaps denominated in euros. Overall, the portfolio is short, which means that if rates move down the portfolio makes money and vice versa. The portfolio contains deals with various European and U.S. counterparts of different ratings. Although the bank in question has an approved internal rating system, for the purposes of this paper, we have decided to use the S&P long-term ratings in order to rate each swap deal according to the rating of the counterpart.

In total, there are 15 different counterparts with 7 different ratings. They are all rated at the investment grade spectrum, i.e., AAA, AA, AA+, A+, A, A- and BBB+. The medium-sized European bank has netting agreements with all the counterparts in the portfolio (in accordance with Assumption A4 above). This is important because we can sum up all the exposures per counterpart.

The swap exposures were grouped per counterpart rating to create the 7 sub-portfolios7. This aggregation was based on the assumption that counterparts of the same rating follow the same default process (in accordance with Assumption A2 above). The portfolio consists of deals in EUR currency only, mainly with European counterparts. Hence, for our subsequent hedging purposes we only use European credit spread indices.

The market risk per sub-portfolio, in terms of a parallel yield curve shift of one basis point (bp), differs across the sub-portfolios, as expected. Generally speaking, if interest rates move upwards in the Euro Area, then most of the sub-portfolios will lose money. In contrast, the credit exposure of these portfolios will be reduced since the actual credit exposure is defined as the maximum of zero and a positive mark-to-market at an arbitrary point in time t, where t is equal to the value date8. Given the proprietary nature of the dataset, we have chosen not to report here the actual date of our calculations. The sub-portfolios created following the grouping of the exposures are shown in Figure 1. It is obvious that only 4 out of the 7 sub-portfolios exhibit positive exposure. The other 3 have zero exposure since their current mark-to-market is negative6.

The integrated measure

The market and credit risk for each of the 4 sub-portfolios with positive exposure were calculated using expression (2.2) by running a historical simulation9-based VaR on weekly data covering the 2 years prior to the value/reference date. The time horizon is 3 months and the confidence interval is set at 99%. It is evident from expression (2.1) that one has to decide on the maturities of the underlying credit spread indices, set the strike prices of the credit spread call index options, and calculate their prices before finding the option notional.

We make use of the credit spread option valuation model and calibration approach developed by Hatgioannides and Petropoulos (2006). Since our AAA, A+, BBB+ swap sub-portfolios have all maturities of 2 years and the AA sub-portfolio has a maturity of 9 years, we have collected 2 years’ worth of data on AAA, AA, A+, BBB+ credit spread indices that match the expirations of the corresponding sub-portfolios. We calculate their long run mean, set the strikes of the credit spread options equal to the corresponding index’s long run mean, and find the 4 credit spread index options price11. Results, together with the swaps VaR, credit spread index options VaR, and our measure of integrated VaR are all shown in Figure 2.

It is obvious from Figure 2 that the integrated measure is higher than the swaps’ market VaR alone, showing that there is no diversification effect since the two sources of risk are not directly linked. The ratio of the credit spread index options VaR and the integrated VaR reported in the last line of Figure 2 shows the level of default risk that each sub-portfolio runs. This figure is crucial for the risk manager. For example for the A- sub-portfolio the ratio is as high as 47%, indicating an increased default risk arising from the swap exposure profile and the level of the credit spread index. Based on these ratios, a risk manager could readily set limits and trigger...
These findings are also confirmed when instead of the historical simulation we perform a multi-step Monte Carlo simulation for the swap sub-portfolios under the standard and our integrated approach. The calculated expected and unexpected loss levels in order to take action or not. Our framework could actually lead a financial institution to proactively manage the default risk of their swap portfolios.

Our version of the standard paradigm of economic capital

Figure 3 reports the long position in the credit spread option notional that is needed to hedge the default risk of each swap sub-portfolio (see equation (2.1)). We are assuming a flat recovery rate of 0.67, as in Jarrow et al. (1997). In tandem with the previous subsection, we are running a historical simulation over 2 years of weekly data, assuming that the option notional remains the same throughout the simulation period, to find the expected and unexpected loss for each of the 4 swap sub-portfolios as in equation (3.4). The total economic capital is then merely the sum of the expected and unexpected loss.

Economic capital under the standard approach

As a comparison, we are measuring the total economic capital using equations (3.2) and (3.3) that depict the standard approach. We are maintaining the same expected credit exposure, E(CE), and recovery rate as discussed above. As it has been already explained, the key difference between our approach and the standard one is the reliance on the probabilities of default of the latter. It is widely accepted that the risk of default is an unstable dynamic process, affected by a range of factors, and directly linked to credit spreads. To this end, we are adopting the framework developed in Hatgioannides and Petropoulos (2006), who use their estimated credit spread curves to infer the probabilities of default transition rating matrix. They then calibrate the implied transition matrix to the historical one provided by Moody’s. We repeat this historical simulation of the default probabilities, using weekly data for the 2-year period prior to the value date and the usual 99% confidence interval, to gauge how they change in our two-year sample. As expected, the weekly time series of the 3M AAA, AA, A- and BBB+ implied default probabilities are quite volatile, reflecting market expectations captured by the dynamics of the corresponding credit spreads. The 2.33SD (standard deviations) value of the implied default probabilities per rating is reported in Figure 4 together with the calculations of total economic capital.

Taking stock

The last rows of Figures 3 and 4 show the ratios of total economic capital over the mark-to-market value for each of the swap sub-portfolios under our approach and the standard one, respectively. With the exception of the BBB+ rated sub-portfolio, our methodology produces significantly higher figures for this ratio, reflecting much higher values for the expected total economic loss. Such a substantial difference between the results under the two approaches reflects the disparity in the way that default risk is being assimilated. Our integrated methodology relies on credit spread options instead of default probabilities, which can actually capture the short-term dynamics of the probabilities of default better and faster since the prices of credit spread options do change over time depending on credit spread fluctuations and, more importantly, their volatility.

A further advantage of our new methodology is that back-testing may prove quite straightforward. Since historical data of the financial instruments that we are using in our methodology are available, we can always check how well our methodology has performed over a prescribed time horizon, in contrast, in the standard methodology, which uses probabilities of default, it is not always easy to back-test its efficiency since we need observations of actual defaults as well as of the rate of their occurrence, historical information which is hard to find in a consistent manner for a long term.

Conclusions

This paper proposes an integrated market and credit risk measure which is put to the test by estimating the economic loss for an actual swap portfolio. The methodology devised is designed to capture the worst case scenario of full default in a horizon of three months (3M). Under the proposed integrated measure, the three different distributions required in the standard model to measure economic loss (credit exposure, default rate, recovery rate) are implicitly captured by the expected and unexpected movements of the credit spread index options. Since the notional of the credit spread index option is tied with the 3M expected credit exposure and its recovery, by calculating the expected exposure of the options and their 2.33SD exposure over 3M we can arrive to the total economic loss.
The comparison between the standard paradigm and our integrated approach proved to be quite interesting. Although financial managers might not subscribe to the lower return on capital that, in view of our results our integrated approach entails, the road to the current financial crisis and its enduring adverse effects necessitate enhanced prudence and increased solvency of financial operations.

References

- Basle Committee on Banking Supervision, 1999, Credit risk modelling: current practices and applications
- Basle Committee on Banking Supervision, 2001, The new Basel capital accord
- British Bankers Association, 1999, Credit risk and regulation panel
Abstract

With historical simulation it is often asserted that the calculation of value-at-risk (VaR) under this approach is based simply on using time series of historical data and changes which actually occurred to estimate risk. This paper examines two distinct measurements of change which include a simple first difference and a percentage change which is scaled by the current value of the relevant risk factor. While the two measurements of change are both used in industry, we know of no discussion regarding a comparison of the two measurements and when to use one versus another. While it may be widely believed that the two measurements generate similar VaR numbers, this investigation reveals that the two measurements generate quite different values for volatile markets and produce similar estimates for more normal environments. Backtesting in this paper demonstrates that the first difference is superior to the scaled percentage for risk drivers which exhibit mean-reversion, such as interest rates and CDS spreads, while the scaled percentage appears superior for the equity risk drivers. One downside for first differences is that the measurement of change does not preclude negative risk driver values, which for this metric we observe for short-term interest rates and CDS spreads. Firms should be interested in this research as we show that VaR values based on these two distinct changes may be very different and that this would impact capital requirements. In this work we show that it is only with exploration that practitioners may be able to choose an appropriate metric for a particular risk factor while this is often taken for granted in describing and implementing the historical simulation method for VaR. Thus this paper has a very real-world orientation with practical implications that managers and risk professionals should find interesting.

1 We would like to thank Dr. George Jabbour of The George Washington University, Marat Kramin of Wachovia Securities, and Ping Hu and Seyi Olurotimi of Evergreen Investments for their helpful comments. The views expressed in this article are those of the authors and do not necessarily reflect the position of Wachovia Securities or Evergreen Investments.
Risk drivers in historical simulation: scaled percentage changes versus first differences

Historical simulation represents one approach to calculate VaR where the thrust of the approach is that the joint distribution of returns to an asset or portfolio may be reasonably approximated by the past joint return distribution. Thus historical simulation involves using past data in a very direct way where it is a guide as to what may happen in the future. There are well known issues with historical simulation as there are with any risk measurement methodol-ogy. We will not dwell on them here except to state that the most glaringly obvious is the length of data to employ and the lack of long time series for certain risk factors. In addition and more generally, VaR only seeks to measure the likelihood of a particular loss but not the magnitude given a move beyond the specified threshold, which is the focus of conditional VaR (CVaR) – also referred to as expected shortfall (ES) or expected tail loss (ETL). There are inherent benefits to the historical simulation approach which include not having to estimate large correlation or covariance matrices and that the method is non-parametric and may capture certain stylized facets of the data which may not be adequately modeled via a parametric approach. Contrary to popular belief the approach is not ‘assumption free’ as one must make assumptions regarding the length of time series, the underlying risk factors, portfolio holdings, and even the definition of the changes in the underlying data.

With historical simulation there are two main approaches to calculating profit and loss, which include the full revaluation of all financial instruments and a simple sensitivity-based approach where for non-linear instruments it is typically the so-called delta-gamma method. The former approach takes forecasted risk factors from the historical simulation method as inputs to a valuation model to fully revalue all positions. The latter valuation approach is based on using sensitivity measures from pricing models coupled with the forecasted risk factors from the historical simulation to revalue positions.

Risk factors or drivers speak to those variables of interest which would impact the value of specified underlying financial instruments. Risk factors include random variables such as stock prices, interest rates, foreign exchange spot rates, commodity prices, credit spreads, and so on. The main premise of historical simulation is that we can measure the risk of our portfolio by using past changes to risk factors to revalue our financial instruments using today’s set, as the standard assumption is that the portfolio is held constant. Consequently, with the historical simulation method one simply assumes that the distribution of tomorrow’s portfolio returns may be well approximated by the empirical distribution of past changes.

There have been enhancements proposed to the basic historical simulation approach including, but not limited to, weighting schemes as proposed by Boudoukh et al. (1998) and volatility updating as described by Hull and White (1998). In any event, the fundamental premise of the approach, which is that historical changes can be used to revalue today’s portfolio and to calculate a percentile loss for tomorrow or beyond, still remains the same.

In this paper we focus on the measurement of changes in the underlying risk factors. While some authors specifically define this measurement others simply mention that, with historical simulation, one uses time series of past data to calculate changes to today’s portfolio value at some specified percentile over a particular time horizon. Without exhausting the list of authors we simply mention that Hull (2002) explicitly refers to returns as percentage changes, Jorion (2007) simply mentions returns, and Finger (2006) poses the question what “do we mean by price changes? Should we apply absolute differences or returns?” That is, should one use first differences or percentage changes?

Herein we examine two distinct measurements which include a standard scaled percentage change and a first difference. Using time series of data and each of these metrics, we examine risk factor changes calculated over a wide array of variables which span various markets. Based on standard backtesting at a specified percentile, we determine which metric is statistically more robust for each of the drivers over the entire data sample. We test the two distinct changes (i.e., standard percentage change scaled by the current value of the relevant risk factor and first difference) for accuracy based on the number of expected violations (i.e., failures) and measure the statistical efficacy of the backtesting. Further, we examine the pattern of violations and look for ‘clustering’ or ‘bunching’ in the data and formally test for independence with respect to violations and jointly for independence and coverage of violations via a conditional coverage likelihood ratio. Finally, we go beyond what has become the standard statistical testing to explore other issues such as negativity of the underlying risk factors and the difference in VaR as calculated using one metric versus the other.

Historical simulation method

Given time series of risk factors, historical simulation seeks to estimate a measure of VaR that is based on revaluation which is either model driven (i.e., full re-valuation) or from a truncated Taylor Series to the second order (i.e., delta-gamma approach). A risk factor (or driver) is an input variable that can affect the value of a financial instrument, derivative or otherwise. With historical simulation one uses the percentage change or first difference in risk factor values observed between time periods t_i and t_{i-1}, where $\Delta > 0$. Thus, with historical simulation one takes a time series of data for some number of trading days for a particular risk factor denoted as $\Delta f[t] = f(t) - f(t-1)$, where n is somewhat arbitrary but with a minimum of 250 days for regulatory reporting as per the Basle Committee on Banking Supervision (2005). Today’s value of the risk factor may be denoted as f_{today}. If one can estimate tomorrow’s value of a particular risk factor $f_{tomorrow}$, then one may revalue a financial instrument whose value is a function of this risk factor and perhaps others.
Risk drivers in historical simulation: scaled percentage changes versus first differences

To estimate tomorrow’s value of a risk factor one must make an assumption in the historical simulation. One popular assumption is that the percentage change of a risk factor between today and tomorrow is the same as it was between time periods i and i-1. If we are calculating VaR over a one-day horizon (Δ = 1) then we can write that: $f_{\text{tomorrow}} / f_{\text{today}} = f_i / f_{i-1}$ or $f_{\text{tomorrow}} = f_{\text{today}} \cdot (f_i / f_{i-1})$ (2).

From equation (2) it can be shown that: $f_{\text{tomorrow}} - f_{\text{today}} = f_{\text{today}} \cdot (f_i - f_{i-1})/ f_{i-1}$ (3).

The full revaluation approach is based on equation (2), as one obtains a value for the relevant risk factor and simply uses it as an input to a pricing model or more directly for a linear instrument. In contrast, equation (3) is used for the delta-gamma approximation as it defines a change. Under the delta-gamma approach the change in value (ΔP) of a position (P) is given by:

$$\Delta P = \Sigma_{k} \frac{\partial P}{\partial f_{k}} \cdot \Delta f_{k} + \frac{1}{2} \Sigma_{k} \Sigma_{j \neq k} \frac{\partial^{2} P}{\partial f_{k} \partial f_{j}} \cdot (\Delta f_{k})^{2}$$

(4), where the summations are taken over all underlying risk factors and sensitivities (i.e., there are k risk factors with $\partial P/\partial f_{k}$ and $\partial^{2} P/\partial f_{k}^{2}$ for each and a time series of values for each risk factor), which are commonly referred to as the delta and gamma values respectively. For many financial instruments these partial derivatives are typically calculated based on a differencing scheme where one may use the following: $\partial P/\partial f_{k} = [P(f_{k} + \delta_{k}) - P(f_{k} - \delta_{k})]/2\delta_{k}$ (5).

$$\partial^{2} P/\partial f_{k}^{2} = [P(f_{k} + \delta_{k}) - 2P(f_{k}) + P(f_{k} - \delta_{k})]/\delta_{k}^{2}$$ (6), where δ_{k} is a small change to single risk factor f_{k} at a particular point in time. Given these approximations and one year of trading data (i.e., approximately 252 observations), for each risk factor $\Delta f = f_{\text{tomorrow}} - f_{\text{today}}$ is determined by equation (3) for all 251 possible changes (i.e., $\Delta f_{1}, \Delta f_{2}, \ldots, \Delta f_{251}$ which are determined using equation (4) or full revaluation). It is important to note that the time series need not be simply one year and that the length of time between risk factor changes may be greater than one day.

Equations (1) and (3) state that the scaled percentage change or return between tomorrow and today (or over a longer length of time) is the same as they were between days i and i-1. This is the crux of the basic historical simulation method and we can define the below as a percentage change or return based assumption:

$$(f_{\text{tomorrow}} - f_{\text{today}})/ f_{\text{today}} = (f_i - f_{i-1})/ f_{i-1}$$ (7).

Relative to the above, often financial institutions will use a simple first difference with historical simulation to forecast risk factor changes for random variables such as interest rates, bond spreads, credit default swap spreads (CDS), etc. With this approach changes in risk factors are given by: $f_{\text{tomorrow}} - f_{\text{today}} = f_i - f_{i-1}$ (8).

We define equations (7) and (8) as the percentage change and first difference assumptions respectively, where we note that the length of the difference is set equal to one trading day but this need not be the case.

In general, returns to financial instruments are often measured in log-space, which fits neatly with the concept of limited liability for equity shares and the non-negativity of many financial variables. And, with the standard Monte-Carlo method, one typically works with log returns for simulation in the real or risk-neutral measure (i.e., for VaR or for derivatives valuation respectfully). That said, the difference between the standard percentage change and log-returns are typically negligible for high-frequency data as the ln(1+x) \approx x for small values of x. When one attempts to forecast risk drivers in historical simulation using log-returns or scaled percentage changes is equivalent. It seems widely agreed upon to model equity share changes using the scaled percentage change based assumption (i.e., or log-return data) but this point is not as settled as it pertains to other risk factors such as interest rates and credit spreads especially over short time horizons. Just as one may use the standard Geometric Brownian Motion model to generate future values of stock or index prices, interest rates and credit spreads are often modeled using a mean-reverting stochastic process where the variable of interest is assumed normally distributed which may result in negative values.

As discussed previously, we have as our two measures of change the following: $f_{\text{tomorrow}} - f_{\text{today}} = f_{\text{today}} \cdot (f_i - f_{i-1})/ f_{i-1}$ (9) and $f_{\text{tomorrow}} - f_{\text{today}} = f_{\text{today}} \cdot (f_i - f_{i-1})/ f_{i-1}$ (10), which are the scaled percentage change and first difference metrics respectively. Compared to the right hand side of equation (10), which is a straightforward difference between times t_{i} and t_{i-1}, the right hand side of equation (9) has a scaling term as each $f_i - f_{i-1}$ is multiplied by a factor of $f_{\text{today}}/ f_{i-1}$. It is this factor which leads to the potential differences in the P&L and VaR values where for larger relative differences between today’s value of a respective factor and the value at time t_{i}, the greater the difference between the two metrics.

Analysis

The Basle Committee on Banking Supervision (2005) requires that if one adopts an internal model based approach to calculate VaR then backtesting must be carried out regularly. In this section we briefly define VaR, then we describe the relevant risk factors (i.e., the data), we detail the testing methods which we apply, and, finally, we present our testing results.

VaR is a loss level over a particular horizon, with a specified confidence level, that one believes will not be exceeded. We denote this loss measure as VaR(α), where α is the critical value which corresponds to the percentile of the respective risk factor distribution such that the probability for VaR(α) is consistent with α and the loss measure is conditional on information up to the time period of measurement. In measuring VaR(α) we use changes given by each of equations (9) and (10), which is the crux of our analysis as
we seek to explore the difference in VaR estimates associated with using these two change metrics. For financial institutions that use an internal models-based approach it is a requirement that one tests the VaR model for failures or violations. That is, given a time series of data (i.e., risk factors, instrument values, or changes in P&L), one counts the number of days in the sample and defines the failure rate to be the number of incidents where the variable of interest was worse than expected given the specification of the VaR measure. In measuring VaR, we go directly to the risk factors and do not seek to measure instrument or portfolio level metrics as we are concerned with simply the measurement of the changes in these primary factors which serve to facilitate the valuation of instruments and aggregate portfolios via an appropriate method.

The confidence level of a VaR estimate is given by $\alpha = (1 - \alpha)$ and it is convention to report VaR as a positive value, which means that we take the negative of the loss measure. Given that the confidence level is $\alpha = (1 - \alpha)$ then with a good VaR model over time one should observe the number of changes in risk factor values which exceed the confidence level α-percent of the time. If one specifies a confidence level of 99% then given a sample of risk factor data one should observe changes which exceed this level 1% of the time. A model that does not meet backtesting standards results in a penalty (i.e., an increase in the scalar used to determine capital requirements from the regulatory specified base level of three).

The Basle Committee on Banking Supervision (2005) requires that banks calculate VaR on a daily basis, utilize a confidence level of 99%, and a forecast horizon of 10-days. The historical dataset to be used to determine model inputs, or directly for historical simulation, must include at least 250 trading days. In many cases financial institutions simply compute 1-day VaR and then scale the measure by the square-root-of time (i.e., an increase in the scalar used to determine capital requirements from the regulatory specified base level of three).

In the analysis in this paper we examine directly the changes in various risk factors at a 99% confidence level, over a 1-day horizon, using 252 trading days of data and rolling periods. A list of risk factors, descriptions, start and end dates, and number of observations is included in Figure 1. As is clear, we have factors which span various markets (i.e., fixed income, foreign exchange, equity, commodity, and credit) which allows for a rich analysis.

The statistical tests which we employ include those proposed by Kupiec (1995) and Christoffersen (1998) and further detailed in Christoffersen (2003) which we largely follow in this section. In implementing the likelihood ratio test proposed by Kupiec (1995), we observe a time series of ex-ante VaR forecasts and past ex-post returns and form a failure or hit sequence of VaR violations by defining a simple indicator variable I_{t+k} as follows:

$$I_{t+k} = \begin{cases} 1, & \text{if } f_{t+k} - f_{t} < \text{VaR}(k, \alpha) \text{ (II)}, \text{ where} \quad k=1 \text{ for our analysis}, \ f_{t+k} - f_{t} > \text{VaR}(k, \alpha) \end{cases}$$

where f_{t+k} represents actual daily changes for a factor and $\text{VaR}(k, \alpha)$ is measured using the two change metrics (i.e., based on equations (9) and (10)) including scaled percentage changes and first differences.
Risk drivers in historical simulation: scaled percentage changes versus first differences

ences, and \(\alpha = .01 \) or equivalently \(p = .99 \). Thus the indicator variable is one if the actual change is less than or equal to the VaR value predicted in advance and based on the prior 252 trading days of data. Alternatively the indicator is zero if the value is greater than the VaR value predicted in advance. Thus with this testing we form a time series of values based on the function associated with the indicator variable given by equation (11). Given this and our description of VaR, the respective percentiles, and the time series of risk factors, we have that for each sequence of 252 trading days the 2nd worst number corresponds to the 99th percentile confidence level. We note here that technically the 99th percentile confidence level corresponds to a value between the 2nd and 3rd worst number and one may interpolate to determine a value. However, we choose to be conservative and take the 2nd worst value which does not impact the results significantly. As we roll forward in time and count the number of violations, we should observe values which exceed the 2nd worst number with the expected likelihood. In short, the hit or failure sequence as described by the time series of indicator variables should look like a random toss of a coin (i.e., a Bernoulli distributed random variable) where the observables are a series of 1s and 0s but the probability of a violation (i.e., a one) should occur 1% of the time based on the respective confidence level.

In testing the fraction of violations for a particular risk factor we test whether the proportion of violations \(\pi \) is significantly different from the expected value \(\alpha \). Thus our null and alternative hypotheses are given by: \(H_0 : \pi = \alpha ; H_a : \pi \neq \alpha \).

Given a total number of observations in the hit sequence of \(T \) we can easily estimate \(\pi \) as \(\hat{\pi} = T_1/T \), where \(T_1 \) is the number of 0s in the sample. Symptomatically, as the number of observations in the hit sequence goes to infinity according to Christoffersen (2003), the unconditional likelihood ratio test \(LR_{uc} \) is given by the following:

\[
LR_{uc} = -2 \left(T_0 \cdot \ln(1-\hat{\pi}) + T_1 \cdot \ln(\hat{\pi}) \right) - \chi^2 = (12), \text{ which is chi-square distributed with one-degree of freedom. Put simply, the LRuc tests whether or not one observes 'statistically' the correct proportion of violations.}\]

The LRuc test is unconditional in that there is no 'conditioning' on prior observations in the sequence of indicator variables. That said, it does not address independence and is no 'conditioning' on prior observations in the sequence of indicator variables. Therefore, \(LR_{ind} \) (i.e., \(LR_{ID} \)) is the probability that given no violation that one step ahead we do not observe a failure. \(\pi_{01} \) and \(\pi_{11} \) (i.e., \(\pi_{00} \)) are defined similarly. Using notation similar to that which we described in the LRuc test we have the following maximum likelihood estimates for the relevant probabilities:

\[
\begin{align*}
\hat{\pi} & = \frac{T_1}{T_0 + T_1}, \\
\hat{\pi}_{01} & = \frac{T_0}{T_0 + T_1}, \\
\hat{\pi}_{11} & = \frac{T_1}{T_0 + T_1}, \\
\hat{\pi}_{00} & = 1 - \hat{\pi}_{01} = 1 - \hat{\pi}_{11}.
\end{align*}
\]

where \(\hat{\pi}_{ij} \) is the probability that given no violation (i.e., a zero in the "hit" sequence of indicator variables) one observes a value of one for the next observation. Therefore, \(LR_{ID} \) (i.e., \(LR_{ID} \)) is the probability that given no violation that one step ahead we do not observe a failure. \(\pi_{01} \) and \(\pi_{11} \) (i.e., \(\pi_{00} \)) are defined similarly. Using notation similar to that which we described in the LRuc test we have the following maximum likelihood estimates for the relevant probabilities:

\[
\begin{align*}
\hat{\pi}_{01} & = \frac{T_0}{T_0 + T_1}, \\
\hat{\pi}_{11} & = \frac{T_1}{T_0 + T_1}, \\
\hat{\pi}_{00} & = 1 - \hat{\pi}_{01} = 1 - \hat{\pi}_{11}.
\end{align*}
\]

where \(\hat{\pi}_{ij} \) is the probability that given no violation (i.e., a zero in the "hit" sequence of indicator variables) one observes a value of one for the next observation. Therefore, \(LR_{ID} \) (i.e., \(LR_{ID} \)) is the probability that given no violation that one step ahead we do not observe a failure. \(\pi_{01} \) and \(\pi_{11} \) (i.e., \(\pi_{00} \)) are defined similarly. Using notation similar to that which we described in the LRuc test we have the following maximum likelihood estimates for the relevant probabilities:

\[
\begin{align*}
\hat{\pi}_{01} & = \frac{T_0}{T_0 + T_1}, \\
\hat{\pi}_{11} & = \frac{T_1}{T_0 + T_1}, \\
\hat{\pi}_{00} & = 1 - \hat{\pi}_{01} = 1 - \hat{\pi}_{11}.
\end{align*}
\]

Given the above where equation (16) is effectively our null hypothesis (i.e., \(H_0 : \pi = \hat{\pi}, H_a : \pi \neq \hat{\pi} \)), for \(\pi_{11} \neq 0 \), according to Christoffersen (2003), the likelihood ratio test for independence \(LR_{ind} \) in the 'hit' sequence of violations is given by: \(LR_{ind} = -2(T_0 \cdot \ln(\hat{\pi}_{01}) + T_1 \cdot \ln(\hat{\pi}_{11}) - T_0 \cdot \ln(\hat{\pi}_{00}) - T_1 \cdot \ln(\hat{\pi}_{11}) - T_1 \cdot \ln(\hat{\pi}_{01}) - \chi^2 = (17) \), with \(\hat{\pi} = T_1/T \), where \(T_1 \) is the number of 1s in the sample. For \(\pi_{11} = 0 \) \(LR_{ind} \) is given by: \(LR_{ind} = -2(T_0 \cdot \ln(\hat{\pi}_{01}) + T_1 \cdot \ln(\hat{\pi}_{11}) - T_0 \cdot \ln(\hat{\pi}_{00}) - T_1 \cdot \ln(\hat{\pi}_{11}) - \chi^2 = (18) \).

Lastly, we test jointly for both coverage and independence using the likelihood ratio conditional coverage test statistic which is given by: \(LR_{cc} = LR_{uc} + LR_{ind} - \chi^2 = (19) \).

The \(LR_{cc} \) is chi-square distributed with one-degree of freedom and the \(LR_{cc} \) is chi-square distributed with two-degrees of freedom.
Risk drivers in historical simulation: scaled percentage changes versus first differences

Results

Before presenting initial statistical results, given that we are dealing directly with the risk factors as opposed to positions in financial instruments, we must make an assumption regarding what is considered to be a ‘loss’ in mark-to-market given a directional move in the respective driver. Since our interest is in comparing VaR values using scaled percentage changes versus first differences, for simplicity we assume that a decrease in the value of each risk factor would result in a loss. We are well aware that this assumption presumes certain positions where, for example, a decrease in rates results in an increase in bond prices and so for us we are implicitly short bonds. Similarly, to have a loss with a decrease in equities and commodities we are implicitly long equities and commodities. Decreases in the U.S. dollar per foreign exchange (i.e., U.S./yen) result in a strengthening of the U.S. dollar so, therefore, we are implicitly long U.S. dollars. Lastly, for credit default swaps a decrease in spreads benefits sellers of protection and therefore we are implicitly buyers of credit protection.

In Figures A1 and A2 in the Appendix, for each measure of change we present the statistical results for the LRuc, LRind, and LRcc tests for all risk factors with α=.01 and p=.99. As evidenced by the results in Figures A1 and A2, both measures of change seem to perform reasonably well where for first differences for all risk factors one fails to reject the null hypothesis for unconditional coverage but one rejects the null hypothesis for independence and conditional coverage in certain cases. With scaled percentage changes in certain instances one rejects the null hypothesis related to unconditional coverage and/or independence and the joint hypothesis. Most noticeably this occurs with rates including JPY government interest rates and short-term credit default swap spreads where the number of violations for scaled percentage changes exceeds that for first differences. However, with scaled percentage changes one fails to reject the null hypotheses for all equities with the exception the VIX index which is not a ‘true’ equity or equity-based index but rather a measure of near-term implied volatility for the S&P 500 index. These results for equities are consistent with the widely used approach of using a log-normal random walk with the Monte-Carlo approach.

In Figure 2 we examine the issue of negativity where for first differences it is entirely feasible that the value of a risk factor included in the calculation of a particular VaR value may be negative. While this may not be an issue for certain risk factors (i.e., natural gas location spreads), for most drivers negative values are not practically feasible. As one can see from Figure 2, we observe negative values for JPY rates, Amazon.com Inc., and generic credit default swap spreads. The issue is particularly pervasive for the short-term rates and short-term default swap spreads. Some may consider a negative value to be a simple nuisance which may be checked for and heuristically fixed. That said, it may be entirely hidden if one uses the delta-gamma method for valuation and most certainly problematic with full re-valuation. Thus with our data sample while a simple first difference ‘passes’ standard statistical tests of coverage and independence, it may result in risk factor values which are undesirable.

Figures 3 and 4, Chart A, depict the 6-month JPY rate and 1-month natural gas futures values respectively, as well as the difference in VaR values based on the two metrics. Figures 3 and 4, Chart B, depict the daily changes (we take the negative of the changes as this is consistent with representing VaR as a positive value) for each driver along with the time series of VaR values as calculated using each of the respective metrics. With 6-month JPY rates, the scaled percentage change results in many more violations and the model does not pass statistical testing. Thus in this case it is not surprising that one would observe differences in the VaR values. In contrast, for 1-month natural gas futures (i.e., front month futures) both models are deemed statistically sound but there still remains significant differences in the VaR values. It is obvious from Figures 3 and 4, Chart B, that the scaled percentage change measure results in a more dynamic updating relative to first differences which update less frequently and look like a ‘step function’ which is directly related to the factor \(\frac{f_{today}}{f_{i-1}} \) embedded in the scaled percentage change calculation. Furthermore, it is also obvious that the VaR values based on the scaled percentage change track the actual changes in the risk factor values better. As space is limited, we also plotted but did not include other risk factors and their VaR values and actual changes. In general, during normal market conditions the differences in VaR are not large but during volatile environments the values may differ greatly, with the scaled percentage change generally tracking actual risk factor changes more accurately. Since VaR numbers are used to calculate capital, finan-

<table>
<thead>
<tr>
<th>Risk factor</th>
<th># of VaR obs.</th>
<th># of changes per VaR</th>
<th># of risk factor obs.</th>
<th>% of negative obs.</th>
<th># of negative obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 month JPY rate</td>
<td>3,378</td>
<td>251</td>
<td>847,878</td>
<td>1.5730%</td>
<td>13,337</td>
</tr>
<tr>
<td>2 year JPY rate</td>
<td>3,378</td>
<td>251</td>
<td>847,878</td>
<td>0.0263%</td>
<td>175</td>
</tr>
<tr>
<td>Amazon.com Inc.</td>
<td>2,548</td>
<td>251</td>
<td>639,548</td>
<td>0.0002%</td>
<td>1</td>
</tr>
<tr>
<td>Generic corporate BBB 6 month CDS</td>
<td>1,182</td>
<td>251</td>
<td>296,682</td>
<td>1.3196%</td>
<td>3,915</td>
</tr>
<tr>
<td>Generic corporate BB 6 month CDS</td>
<td>1,182</td>
<td>251</td>
<td>296,682</td>
<td>3.7168%</td>
<td>11,027</td>
</tr>
<tr>
<td>Generic corporate BBB 10 year CDS</td>
<td>1,182</td>
<td>251</td>
<td>296,682</td>
<td>0.0003%</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 2 - In this table we list the risk factors, number of VaR observations, number of first differences (changes) use in the window to calculate VaR, number of risk factor observations, percent of negative observations, and number of negative observations where a negative observation is observed when one takes a risk factor value and adds a first difference (251 for each VaR calculation) and gets a value which is less than zero.
Risk drivers in historical simulation: scaled percentage changes versus first differences

Firms need to be aware of the difference in capital calculations and requirements due to VaR calculations based on the two distinct measurements of changes.

Finally, in Figures 5 and 6 we look at VaR values for actual trades including a credit default swap and corporate bond. In both cases, the scaled percentage change VaR value results in a more conservative estimate where, for the credit default swap, the difference in the VaR values as measured by scaled percentage changes and first differences respectively exceeds 100% on many days and the difference for the corporate bond is on the order of 10%. These actual examples further tell us that it is imperative for financial institutions to be aware of the differences in the VaR numbers based on one measurement versus the other as the impact to capital are significant.

The analysis reveals that standard tests which examine coverage and independence may not ‘tell the whole story.’ It may be that one metric is more appropriate for a certain driver but that the other is more conservative. Furthermore, while our analysis is undertaken with 252 trading days of risk factor values, a longer window may change the results but there are trade-offs as longer time series tend to incorporate data which may or may not be as relevant as more recent data.

There have been enhancements proposed to the standard historical simulation method. Most notably these enhancements include volatility updating and weighting schemes. With volatility updating one seeks to adjust the calculated return by the ratio of today’s volatility with an estimate of the value i-days ago, consistent with the timing of the risk factor observation (i.e., f_{i-1}). As volatility has been shown to be time-varying this approach seems to be quite natural and in testing appears to improve the historical simulation approach, but the literature is not definitive. The scaled percentage change seems to lend itself to enhancements as one may simply adjust the returns to reflect differences in today’s volatility versus the then current estimated value. Similarly, scaled percentage changes seem to lend themselves to enhancement via a weighting scheme. But, there can be no conclusive pronouncements made

Figure 3 - Chart A depicts the 6-month JPY rate and the difference in VaR values based on the scaled percentage change VaR less the first difference VaR. As per convention, our VaR values are converted to positive values (i.e., we take the negative of the VaR value) prior to calculating the sequence of differences. Chart B depicts the daily changes (i.e., first differences) and the time series of VaR values as calculated using scaled percentage change and first difference metrics. We take the negative of the daily changes which is consistent with the reporting of VaR.

Figure 4 - Chart A depicts 1-month natural gas and the difference in VaR values based on the scaled percentage change VaR less the first difference VaR. As per convention, our VaR values are converted to positive values (i.e., we take the negative of the VaR value) prior to calculating the sequence of differences. Chart B depicts the daily changes (i.e., first differences) and the time series of VaR values as calculated using scaled percentage change and first difference metrics. We take the negative of the daily changes which is consistent with the reporting of VaR.
Risk drivers in historical simulation: scaled percentage changes versus first differences

...regarding these approaches as any testing will always represent a complicated joint test based on the volatility measurement in the former and weighting scheme in the latter, as well as the length of the time series, window for VaR calculations, and set of risk factors examined. Given the results presented herein, perhaps a simple first difference is appropriate and may also lend itself to certain enhancements. With the scaled percentage change it is implied that the data is independently and identically distributed (i.e., i.i.d.). With volatility updating this assumption is relaxed to incorporate time-varying volatility where the updating is used to ‘induce stationarity’ by dividing the change by the then current volatility. With first differences it is not straightforward to introduce a volatility or weighting scheme to enhance the methodology. Lastly, it is also worth noting that with VaR, one often employs a mapping process for assets whose time series are short (i.e., a recently issued stock). For these risk factors, scaled percentage changes seem far more appropriate as first differences are based on levels.

Conclusion

In this paper we have examined the historical VaR methodology and the specification of the underlying change metric for two cases including a scaled percentage change and first difference. We find that the two measurements of changes generate quite different VaR numbers for a volatile market such as the current market with financial crisis, whereas they produce similar VaR numbers for a normal market. The difference in VaR numbers generated from the two measurements would lead to difference in capital, which should be considered for a financial firm when it addresses its capital calculations. Standard back test revels that the scaled percentage is super to the first difference for the equity risk drivers, and that the first difference is superior to the scaled percentage for the risk drivers having mean-reversion, such as interest rates and CDS spreads, though the first difference could forecast a negative driver value especially for short-term interest rates and CDS spreads.

References

• Basle Committee on Banking Supervision, 2005, “Amendment to the capital accord to incorporate market risks,” Basle Committee on Banking Supervision
• Kupiec, P., 1995, “Techniques for verifying the accuracy of risk measurement models,” Journal of Derivatives, 3, 73 – 84

Figure 5 – The graph depicts the 1-day 97.5% VaR values for a Credit Default Swap (“CDS”) with a notional value of $6mm, swap rate of 104bps, start date of 11/20/2002, maturity of 6/1/2009 on UST Inc. which is an A-rated company. Each of the scaled percentage change and first difference VaR values are plotted for the dates on the x-axis. In addition, we plot the values of the VaR differences.

Figure 6 – The graph depicts the 1-day 97.5% VaR values for a corporate semi-annual pay bond with a face amount of $2.2mm, coupon rate of 9.88%, start date of 10/24/2007, maturity of 9/24/2015, on First Data Corporation which is a B-rated company. Each of the scaled percentage change and first difference VaR values are plotted for the dates on the x-axis. In addition we plot the values of the VaR differences.
Appendix

Risk drivers in historical simulation: scaled percentage changes versus first differences

Table A1

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>VaR Obs.</th>
<th># of Failures</th>
<th>Failures % of Obs.</th>
<th>LR_{uc}</th>
<th>LR_{ind}</th>
<th>LR_{cc}</th>
<th>Sig.</th>
<th>Failures % of Obs.</th>
<th>LR_{uc}</th>
<th>LR_{ind}</th>
<th>LR_{cc}</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Interest rates</td>
<td></td>
</tr>
<tr>
<td>6 month U.S.$ rate</td>
<td>3,782</td>
<td>37.82</td>
<td>0.1263%</td>
<td>0.1618</td>
<td>24.183</td>
<td>26.091</td>
<td>y/n/n</td>
<td>39</td>
<td>1.032%</td>
<td>0.0368</td>
<td>11.8759</td>
<td>11.927</td>
</tr>
<tr>
<td>2 year U.S.$ rate</td>
<td>3,782</td>
<td>37.82</td>
<td>2.492%</td>
<td>2.5955</td>
<td>0.1962</td>
<td>y/n/n</td>
<td>37</td>
<td>0.9783%</td>
<td>0.0381</td>
<td>11.784</td>
<td>11.796</td>
<td>y/n/n</td>
</tr>
<tr>
<td>5 year U.S.$ rate</td>
<td>3,782</td>
<td>37.82</td>
<td>0.0576%</td>
<td>0.0246</td>
<td>0.5833</td>
<td>0.7079</td>
<td>y/n/n</td>
<td>34</td>
<td>0.890%</td>
<td>0.0543</td>
<td>0.670</td>
<td>0.670</td>
</tr>
<tr>
<td>6 month JPY rate</td>
<td>3,378</td>
<td>33.78</td>
<td>1.745%</td>
<td>24.2382</td>
<td>9.7359</td>
<td>34.02</td>
<td>n/n/n</td>
<td>32</td>
<td>0.943%</td>
<td>0.0964</td>
<td>0.612</td>
<td>0.708</td>
</tr>
<tr>
<td>2 year JPY rate</td>
<td>3,378</td>
<td>33.78</td>
<td>0.0241%</td>
<td>5.3484</td>
<td>4.4827</td>
<td>9.834</td>
<td>n/n/n</td>
<td>34</td>
<td>1.005%</td>
<td>0.0014</td>
<td>3.912</td>
<td>3.916</td>
</tr>
<tr>
<td>5 year JPY rate</td>
<td>3,378</td>
<td>33.78</td>
<td>0.233%</td>
<td>3.409</td>
<td>1.235</td>
<td>6.424</td>
<td>n/n/n</td>
<td>29</td>
<td>0.895%</td>
<td>0.0716</td>
<td>0.502</td>
<td>0.502</td>
</tr>
<tr>
<td>10 year JPY rate</td>
<td>3,378</td>
<td>33.78</td>
<td>0.238</td>
<td>1.0164</td>
<td>1.3541</td>
<td>10.363</td>
<td>n/n/n</td>
<td>31</td>
<td>1.032%</td>
<td>0.0758</td>
<td>0.584</td>
<td>0.584</td>
</tr>
</tbody>
</table>

Table A2

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>VaR Obs.</th>
<th># of Failures</th>
<th>Failures % of Obs.</th>
<th>LR_{uc}</th>
<th>LR_{ind}</th>
<th>LR_{cc}</th>
<th>Sig.</th>
<th>Failures % of Obs.</th>
<th>LR_{uc}</th>
<th>LR_{ind}</th>
<th>LR_{cc}</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel B. Foreign Exchange Rates</td>
<td></td>
</tr>
<tr>
<td>U.S$/GBP FX rate</td>
<td>3,791</td>
<td>37.91</td>
<td>0.0551%</td>
<td>0.143</td>
<td>0.5846</td>
<td>0.7004</td>
<td>y/n/n</td>
<td>33</td>
<td>0.870%</td>
<td>0.677</td>
<td>1.003</td>
<td>1.772</td>
</tr>
<tr>
<td>U.S$/EUR FX rate</td>
<td>2,227</td>
<td>22.27</td>
<td>0.1943%</td>
<td>0.0746</td>
<td>0.4000</td>
<td>0.4746</td>
<td>y/n/n</td>
<td>19</td>
<td>0.853%</td>
<td>0.3014</td>
<td>0.327</td>
<td>0.837</td>
</tr>
</tbody>
</table>

Table A3

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>VaR Obs.</th>
<th># of Failures</th>
<th>Failures % of Obs.</th>
<th>LR_{uc}</th>
<th>LR_{ind}</th>
<th>LR_{cc}</th>
<th>Sig.</th>
<th>Failures % of Obs.</th>
<th>LR_{uc}</th>
<th>LR_{ind}</th>
<th>LR_{cc}</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel C. Generic credit default swap spreads</td>
<td></td>
</tr>
<tr>
<td>Generic corporate BBB 6 month CDS</td>
<td>1,182</td>
<td>11.82</td>
<td>0.54</td>
<td>8.3827</td>
<td>0.0787</td>
<td>84.464</td>
<td>y/n/n</td>
<td>12</td>
<td>1.052%</td>
<td>0.0028</td>
<td>2.586</td>
<td>2.589</td>
</tr>
<tr>
<td>Generic corporate BBB 3 year CDS</td>
<td>1,182</td>
<td>11.82</td>
<td>0.1356%</td>
<td>1.3449</td>
<td>0.4395</td>
<td>1.783</td>
<td>y/n/n</td>
<td>17</td>
<td>1.438%</td>
<td>2.093</td>
<td>5.2768</td>
<td>5.296</td>
</tr>
<tr>
<td>Generic corporate BBB 5 year CDS</td>
<td>1,182</td>
<td>11.82</td>
<td>0.105%</td>
<td>0.0208</td>
<td>2.4646</td>
<td>0.249</td>
<td>y/n/n</td>
<td>14</td>
<td>1.884%</td>
<td>0.3835</td>
<td>2.072</td>
<td>2.406</td>
</tr>
<tr>
<td>Generic corporate BBB 10 year CDS</td>
<td>1,182</td>
<td>11.82</td>
<td>0.1164%</td>
<td>0.3835</td>
<td>0.359</td>
<td>0.7194</td>
<td>y/n/n</td>
<td>17</td>
<td>1.438%</td>
<td>2.093</td>
<td>0.4966</td>
<td>2.518</td>
</tr>
</tbody>
</table>

Figure A1 – For fixed income (i.e., interest rates) and foreign exchange spot rates the table provides a description of the relevant risk factors in each panel, the total number of VaR observations, expected number of failures (i.e., product of VaR observations and alpha), and results for each of the scaled percentage change and first difference. For each change measure the table includes the total failures, percent of observations, LR_{uc}, LR_{ind}, and LR_{cc} statistics. The failure results are based on a 1% alpha or 99% P-value. If the test statistic values are less than the associated Chi-square test statistic values then one would fail to reject the null hypothesis and the VaR model is deemed statistically sound. The Chi-square test statistics for a 10% probability value for one and two degrees of freedom are 2.7055 and 4.6052 respectively. (y indicates that we fail to reject the null hypothesis, n indicates that we reject the null hypothesis. The Sig. column indicates whether or not the test statistic is significant for each of the three values respectively.)

Figure A2 – For equities, commodities, and generic credit default swap spreads the table provides a description of the relevant risk factors in each panel, the total number of VaR observations, expected number of failures (i.e., product of VaR observations and alpha), and results for each of the scaled percentage change and first difference. For each change measure the table includes the total failures, percent of observations, LR_{uc}, LR_{ind}, and LR_{cc} statistics. The failure results are based on a 1% alpha or 99% P-value. If the test statistic values are less than the associated Chi-square test statistic values then one would fail to reject the null hypothesis and the VaR model is deemed statistically sound. The Chi-square test statistics for a 10% probability value for one and two degrees of freedom are 2.7055 and 4.6052 respectively. (y indicates that we fail to reject the null hypothesis, n indicates that we reject the null hypothesis. The Sig. column indicates whether or not the test statistic is significant for each of the three values respectively.)
The impact of hedge fund family membership on performance and market share

Nicole M. Boyson
Assistant Professor of Finance, Northeastern University

Abstract
We study the impact that hedge fund family membership has on performance and market share. Hedge funds from small fund families outperform those from large families by a statistically significant 4.4% per year on a risk-adjusted basis. We investigate the possible causes for this outperformance and find that regardless of family size, fund families that focus their efforts on their core competencies have ‘core competency’ funds with superior performance, while the same family’s non-core competency funds underperform. We next examine the determinants of hedge fund family market share. A family’s market share is positively related to the number and diversity of funds offered, and is also positively related to past fund performance. Finally, we examine the determinants of fund family market share at the fund style/strategy level. Families that focus on their core competencies attract positive and significant market share to these core-competency funds. Hence, by starting new funds only in their family’s core competencies, fund managers can enjoy increased market share while their investors enjoy good performance.
We study the impact that family membership has on hedge funds. Based on data provided by Tremont Shareholder Advisory Services (TASS), in 1994 about 70% of all hedge funds were ‘stand-alone’ funds where the manager/management company oversaw only one hedge fund. This ratio has steadily declined, reaching a value of just under 50% in 2007. Furthermore, the number of hedge fund families (defined as hedge fund management companies) with 10 or more member funds has grown from 10 families to 228 families over the same time period, a 2,180% increase. Clearly, managers perceive some benefit from expanding their offerings and starting additional hedge funds. In this paper, we investigate the possible motivation for families to start new funds, as well as the costs and benefits accruing to fund investors.

Although there are a number of recent studies regarding mutual fund families, ours is the first to examine hedge fund families. Studies of mutual funds find that mutual fund families: 1) favor certain funds within their families over others, and allocate their best resources to these funds, 2) start new funds in different strategies to attract new investors and to provide more choices to existing investors, 3) start new funds in strategies in which they already have good performers, 4) are often successful in attracting new cash flows, even if many of their existing funds are poor performers, and 5) tend to attract assets to all their funds (even the poor performers) if they have at least one top-performing fund [Guedj and Papastaikoudi (2005), Gaspar et al. (2006), Khorana and Servaes (1999), Zhao (2005), Massa (2003), Berzins (2005), Siggelkow (2003), Nanda et al. (2004)]. In addition, families that focus on their core competencies tend to outperform families that do not. Finally, Khorana and Servaes (2007) argue that mutual fund managers face a conflict of interest between attracting market share and maximizing the performance of their funds, and find some evidence that this conflict drives managerial behavior. However, they also find that mutual fund investors are fairly sophisticated and do consider fund performance when making investment decisions.

Drawing from this literature, we focus on two research questions for our study of hedge funds. First, is hedge fund family size and focus related to hedge fund performance? We show that although hedge funds from single-fund families generally outperform hedge funds from larger families, families that focus on their core competencies outperform families that do not, independent of family size and the number of funds offered. By contrast, funds not within a fund family’s core competency tend to underperform. These results are largely consistent with Siggelkow (2003). Second, why do hedge fund families start new funds? We are mainly interested in potential conflicts of interest between hedge fund managers and investors. These conflicts might occur because managers wish to increase their fund and family market share (maximizing their fee income) while investors simply want the best performance possible. We perform two analyses, one at the fund family level and one at the fund style level (within a fund family). At the family level, market share increases as the number of hedge funds in a family increase. Furthermore, families with strong past performance enjoy increased market share. At fund style level, families that concentrate their assets in fewer style categories enjoy higher market share, and having past expertise in these style categories also improves their market share.

Our interpretation of these findings is that the desire of fund managers to expand their market share is not necessarily at odds with the desire of investors to achieve good performance. For fund families that expand their offerings into style categories in which they already have proficiency, they can enjoy both strong market share and good fund performance. However, for fund families that expand their offerings into areas in which they have not demonstrated expertise, the results are beneficial to families but detrimental to investors: market share increases as fund performance declines.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of families</th>
<th>Mean funds per family</th>
<th>Maximum funds per family</th>
<th>Mean styles per family</th>
<th>Maximum styles per family</th>
<th>Number of one-fund families</th>
<th>Number of families with 10 or more funds</th>
<th>Number of funds</th>
<th>Top style</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>703</td>
<td>1.65</td>
<td>14</td>
<td>1.15</td>
<td>4</td>
<td>497</td>
<td>10</td>
<td>1,160</td>
<td>Managed futures</td>
</tr>
<tr>
<td>1995</td>
<td>873</td>
<td>1.72</td>
<td>17</td>
<td>1.17</td>
<td>5</td>
<td>593</td>
<td>13</td>
<td>1,503</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>1996</td>
<td>1,074</td>
<td>1.77</td>
<td>18</td>
<td>1.18</td>
<td>5</td>
<td>708</td>
<td>16</td>
<td>1,905</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>1997</td>
<td>1,293</td>
<td>1.82</td>
<td>18</td>
<td>1.18</td>
<td>5</td>
<td>828</td>
<td>20</td>
<td>2,348</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>1998</td>
<td>1,516</td>
<td>1.85</td>
<td>20</td>
<td>1.19</td>
<td>5</td>
<td>964</td>
<td>22</td>
<td>2,805</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>1999</td>
<td>1,752</td>
<td>1.92</td>
<td>23</td>
<td>1.2</td>
<td>6</td>
<td>1,079</td>
<td>30</td>
<td>3,362</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>2000</td>
<td>2,023</td>
<td>1.97</td>
<td>25</td>
<td>1.2</td>
<td>6</td>
<td>1,226</td>
<td>34</td>
<td>3,977</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>2001</td>
<td>2,292</td>
<td>2.11</td>
<td>25</td>
<td>1.21</td>
<td>8</td>
<td>1,347</td>
<td>52</td>
<td>4,838</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>2002</td>
<td>2,595</td>
<td>2.25</td>
<td>32</td>
<td>1.23</td>
<td>8</td>
<td>1,479</td>
<td>71</td>
<td>5,837</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>2003</td>
<td>2,889</td>
<td>2.43</td>
<td>39</td>
<td>1.25</td>
<td>8</td>
<td>1,574</td>
<td>100</td>
<td>7,034</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>2004</td>
<td>3,189</td>
<td>2.65</td>
<td>61</td>
<td>1.27</td>
<td>9</td>
<td>1,675</td>
<td>136</td>
<td>8,466</td>
<td>Long/short equity</td>
</tr>
<tr>
<td>2005</td>
<td>3,495</td>
<td>2.82</td>
<td>83</td>
<td>1.3</td>
<td>9</td>
<td>1,793</td>
<td>169</td>
<td>9,870</td>
<td>Fund of funds</td>
</tr>
<tr>
<td>2006</td>
<td>3,729</td>
<td>2.96</td>
<td>92</td>
<td>1.32</td>
<td>9</td>
<td>1,865</td>
<td>204</td>
<td>11,044</td>
<td>Fund of funds</td>
</tr>
<tr>
<td>2007</td>
<td>3,897</td>
<td>3.10</td>
<td>100</td>
<td>1.33</td>
<td>9</td>
<td>1,933</td>
<td>228</td>
<td>12,090</td>
<td>Fund of funds</td>
</tr>
</tbody>
</table>

Figure 1 - Summary statistics for hedge fund families
Data
Data is provided by Credit Suisse/Tremont Advisory Shareholder Services (TASS) for the time period 1994-2007. This database includes data on returns, fees, size, notice and redemption periods, management company, and investment styles of hedge funds. We denote funds with the same management company as belonging to the same 'fund family'. There are eleven investment styles in the database: convertible arbitrage, dedicated short sellers, emerging markets, equity market neutral, event driven, fixed income arbitrage, funds of funds, global macro, long/short equity, managed futures, and multi-strategy. Hedge fund databases suffer from several biases including survivorship bias and instant history or backfilling bias. We control for survivorship bias by including defunct funds until they disappear from the database and mitigate backfilling bias by excluding the fund’s ‘incubation period’ from the time-series of returns.

Figure 1 presents summary statistics regarding the number of families, number of funds, and investment styles. Some interesting trends in the data are notable. First, the number of fund families and the number of funds has grown dramatically, from 703 (1,160) families (funds) in 1994 to 3,897 (12,090) families (funds) in 2007. Second, the average number of funds per family has grown from 1.7 to 3.1 over the same time. Third, the proportion of fund families with only one fund (stand-alone funds) has decreased from 70% in 1994 to 50% in 2007. Fourth, the number of families with 10 or more funds has increased, from 10 families in 1994 to 228 families in 2007. Finally, the most popular fund style was long/short equity beginning in 2005.

Impact of family membership and other characteristics on fund performance
In this section, we test whether family size is related to performance. We perform the following analysis for fund i in family k in category j at time t: performance_{ikt} = constant + β_{1}number of funds in family_{ikt} + β_{2}annual standard deviation_{ikt} + β_{3}annul standard deviation_{ikt-1} + β_{4}log fund size_{ikt} + β_{5}fund age_{ikt} + β_{6}fund flow_{ikt} + β_{7}management fee_{ikt} + β_{8}incentive fee_{ikt} + β_{9}log minimum investment_{ikt} + β_{10}high water mark dummy_{ikt} + β_{11}uses leverage dummy_{ikt-1} + β_{12}personal capital invested dummy_{ikt} + β_{13}open to new investment dummy_{ikt} + β_{14}open to non-accredited investors dummy_{ikt} + β_{15}lockup period in months_{ikt}.

The regression also includes 10 style category dummies (the macro-style category is excluded), and year dummy variables (1994 is excluded). We use an OLS regression, pooling the time-series and cross-sectional correlation across fund residuals in the same year can lead to improperly stated standard errors. To correct for this problem, as well as any unobserved autocorrelation, we use White (1980) standard errors (to account for autocorrelation) adjusted to account for cross-sectional correlation within two separate clusters; clusters include both fund and time.

We use three separate performance measures. The first is the intercept (alpha) from 36-month regressions using the Carhart (1997) four-factor model [see Carhart (1997) for detail on the four factors]. Data for all these factors comes from the website of Kenneth French. The second measure uses the factors of Fung and Hsieh (2004), designed specifically for hedge funds. Their original model includes seven factors, but we include an additional factor, the MSCI Emerging Markets Index return, as suggested by David Hsieh’s website [See Fung and Hsieh (2004) for detail on the seven factors]. Data for these factors is from the website of David Hsieh. Finally, the third return measure is the annual return of the hedge fund, less the risk-free rate.

A few of the independent variables require explanation. The first is fund flow, which is the annual net inflows/outflows to/from a fund scaled by prior year fund size. The second is fund age, calculated using the fund’s start date. Additionally included are indicator variables for high water mark, uses leverage, invests personal capital, fund is open to new investment, and fund is open to non-accredited investors. In interpreting the regression results, a negative and significant coefficient on the lagged number of funds per family (β_{1})
We further investigate the factors driving this result by examining whether it can be attributed to product focus; a hedge fund family’s degree of specialization in a style category. There are two competing hypotheses regarding the impact of product focus on firm profitability. First, by specializing in a style category, the fund family can achieve good performance. Second, fund families that are too specialized will miss out on opportunities to improve profitability through expansion into other styles. Prior literature regarding corporate acquisitions and divestitures finds that product focus is positively related to performance [Morck et al. (1990), Comment and Jarrell (1995), John and Ofek (1995)].

The idea of focus (at the fund family level) can be delineated into two concepts. Firstly is relatedness, implying that funds in the family’s core competency (the fund style in which the family has significant expertise) should outperform non-core competency funds [per Siggelkow (2003), the family’s fringe funds]. The second concept is narrowness, implying that fund families active in fewer styles will have lower monitoring costs, so even fringe funds from narrow families will outperform funds from other families.

To test focus, relatedness, and narrowness, we perform two sets of regressions. The first regressions test the concept of focus, using the following variable calculated at the fund family level and analogous to the Herfindahl index:

\[\text{focus}_kt = \sum_{j} \frac{\text{assets of family } k \text{ in category } j \text{ at time } t}{\text{total assets of family } k \text{ at time } t} \] (2),

where the sum is taken over all categories \(j \) in family \(k \) at time \(t \).

The second regressions test relatedness and narrowness. Relatedness is calculated at the fund level, as:

\[\text{related}_kt = \frac{\text{assets of family } k \text{ in category } j \text{ at time } t}{\text{total assets of family } k \text{ at time } t} \] (3)

This variable will therefore be higher for funds in the family’s core competency and lower for fringe funds. For narrowness we use the variable \(\text{categories}_kt \), a count of the total number of style categories within a fund family \(k \) at time \(t \), which is measured at the family level. Hence, it actually measures breadth (or inverse of narrowness).

The first regression performs the analysis for fund \(i \) in family \(k \) in category \(j \) at time \(t \): perfm\(k_ji,t = \text{constant} + \beta_1 \text{focus}_k + \beta_2 \text{annual standard deviation}_k + \beta_3 \text{log fund size}_L + \beta_4 \text{fund age}_L + \beta_5 \text{fund flow}_L + \beta_6 \text{management fee}_L + \beta_7 \text{incentive fee}_L + \beta_8 \text{log minimum investment}_L + \beta_9 \text{high water mark dummy}_L + \beta_{10} \text{uses leverage dummy}_L + \beta_{11} \text{personal capital invested dummy}_L + \beta_{12} \text{open to new investment dummy}_L + \beta_{13} \text{lockup period in months dummy}_L + \beta_{14} \text{log of family assets (size)} + \beta_{15} \text{log of family assets in same style} + \beta_{16} \text{number of funds in own family in same style} + \beta_{17} \text{log of total number of funds across families in same style} + \beta_{18} \text{fund market share relative to its style} \) (4).

All control variables were described above, except ‘log of family assets (size),’ the log of family assets under management, ‘log of family assets in same style (size),’ the log of family assets under management in the same style as fund \(i \), ‘number of funds in own family in same style,’ ‘total number of funds across families in same style,’ and ‘fund market share relative to its style,’ the total assets in fund \(i \) scaled by the total assets in fund \(i \)’s style category (across all funds in all families). These additional variables are included since funds in large families could have better economies of scale or monitoring ability, and to control for general competitive effects. Time trend and style category dummy variables are also included.
The impact of hedge fund family membership on performance and market share

<table>
<thead>
<tr>
<th>Dependent variable: log of family market share</th>
<th>Specification 1 - Performance measure is equally-weighted four factor alpha</th>
<th>Specification 2 - Performance measure is equally-weighted four factor alpha</th>
<th>Specification 3 - Performance measure is equally-weighted eight factor alpha</th>
<th>Specification 4 - Performance measure is equally-weighted eight factor alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-8.729***</td>
<td>-8.749***</td>
<td>-8.672***</td>
<td>-8.711***</td>
</tr>
<tr>
<td>Lagged focus measure</td>
<td>(-16.94)</td>
<td>(-16.94)</td>
<td>(-16.58)</td>
<td>(-16.76)</td>
</tr>
<tr>
<td>Lagged categories measure</td>
<td>-0.962***</td>
<td>-0.957***</td>
<td>-0.939***</td>
<td>-0.960***</td>
</tr>
<tr>
<td>Lagged number of funds in family</td>
<td>(-2.41)</td>
<td>(-2.40)</td>
<td>(-2.32)</td>
<td>(-2.39)</td>
</tr>
<tr>
<td>Lagged dummy: top 5% fund in family</td>
<td>0.159*</td>
<td>0.154*</td>
<td>0.156*</td>
<td>0.156*</td>
</tr>
<tr>
<td>Lagged number of new funds by family</td>
<td>(-1.52)</td>
<td>(-1.51)</td>
<td>(0.98)</td>
<td>(-0.74)</td>
</tr>
<tr>
<td>Family lagged risk-adjusted return</td>
<td>0.041***</td>
<td>0.043***</td>
<td>0.042***</td>
<td>0.042***</td>
</tr>
<tr>
<td>Number of observations</td>
<td>-0.109</td>
<td>-0.107</td>
<td>0.071</td>
<td>-0.048</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>(3.31)</td>
<td>(3.22)</td>
<td>(3.06)</td>
<td>(3.20)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1,455***</td>
<td>1,251***</td>
<td>0.993**</td>
<td>0.748**</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>3.598</td>
<td>3.598</td>
<td>2.43</td>
<td></td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>33.2</td>
<td>33.0</td>
<td>32.4</td>
<td></td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>32.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log of fund family market share is regressed on a number of variables, as described in Equation (5). OLS regressions are performed using annual data at the fund family level in a pooled time-series, cross-sectional setting. For brevity, not all coefficients are reported. t-statistics using White standard errors adjusted for correlation within two clusters (also known as Rogers standard errors with clustering at the family level and at time level) are shown below the coefficients in parentheses. The regressions also include time trend variables (not reported for brevity). Coefficients marked with ***, **, and * are statistically significant at the 1%, 5%, and 10% levels, respectively.

Figure 4 - Market share regressions at the fund family level

The second set of regressions includes these control variables, but substitutes for focus the variables related and categories. Figure 3 presents results. In contrast with Siggelkow (2003), there is no significant evidence that focus is related to fund performance. However, we find strong evidence that focus-related factors are important in the second regression specification. The positive and significant coefficient on related indicates that for families specializing in few style categories the funds in those categories outperform fringe funds. This result is consistent with Siggelkow’s (2003) study of mutual funds. The coefficient on the categories variable, a measure of breadth of offerings within a fund family, is negative but not statistically significant. The negative sign implies that hedge funds from families investing in many style categories do not outperform those from families that invest in fewer style categories.

Next, we interpret these results. At the family level, we cannot make broad statements about the performance of hedge funds in families that focus versus families that do not. However, at the individual fund level, we have found an important relationship. Individual funds in a family’s core competency outperform funds not in the family’s core competency. Hence, an investor need not avoid all hedge funds from large families, but rather should only select funds within the family’s core competency. Furthermore, an investor would do well to avoid funds that diversify across too many different categories, since although the categories variable is not significant in Figure 3, a separate regression analysis (not reported) including the categories variable but not the related variable has a significantly negative coefficient on categories.

Market share and hedge fund families

This section focuses on hedge fund market share, in an approach similar to Khorana and Servaes (2007). Hedge fund managers receive both management fees based on assets and incentive fees based on profits. Both fees provide incentives for managers to grow their funds. Hence, hedge fund managers and investors could have conflicting goals if managers focus more on market share than on performance.

We perform two market share analyses, at the family level and at the style level. For families with only one style, these data will be identical, but for families with more than one style, these data will differ. The regression specification at the family level for family k at time t is as follows: logmktsharekt = constant + β1focusk(t−1) + β2categoriesk(t−1) + β3total number of funds in familyYk(t−1) + β4dummy for top 5% performer in familyYk(t−1) + β5number of new funds in familyYk(t−1) + β6family performanceYk(t−1) + β7average family αpYk(t−1) + β8average family incentive feeYk(t−1) + β9family management feeYk(t−1) + β10high water mark dummyYk(t−1) + β11uses leverage dummyYk(t−1) + β12personal capital invested dummyYk(t−1) + β13open to new investment dummyYk(t−1) + β14open to non-accredited investors dummyYk(t−1) + β15average family lockup period in monthsYk(t−1) (5)

This regression also includes time trend variables. The other controls are self-explanatory or are as in Figures 2 and 3, except here they are averaged across families, as these regressions are performed at the family level. The dependent variable, logmarket-share, is the log of the market share of the family (total assets in

4 As a robustness test, we also perform the analysis excluding families with only one fund. We perform this test because, by definition, families with only one fund will have maximum values for related and focus and a minimum value of categories, which could be driving our results, since families with only one fund make up the majority of the sample in many years. Dropping families with only 1 fund produces virtually identical results. We also perform these same robustness tests dropping families with 2 or 3 funds, and again, find very similar results to those reported in the paper.

5 Of course, this does not imply that managers do not also care about performance, especially since their incentive fees are tied to performance and managers often invest large percentage of their personal capital in their funds. However, the desire to obtain market share is also relevant.
Figure 5 performs an analysis of market share at the fund style level within each family. Here, the dependent variable’s unit of measurement is the log of market share of a fund style category within a fund family (or total assets in style category j within fund family k at time t + total assets in style category j across all fund families at time t). With this specification, we can more directly test the alignment of incentives between families and investors. We are particularly interested in whether market share by style category within a fund family is higher for families focusing on their core competencies. The regression specification is as follows: log (fund market share) = \text{constant} + \beta_1 \text{relatedness} + \beta_2 \text{lagged number of funds} + \beta_3 \text{lagged top 5% fund} + \beta_4 \text{lagged top 5% fund by style} + \beta_5 \text{lagged number of new funds} + \beta_6 \text{lagged number of new funds by style} + \beta_7 \text{dummy for top 5% performer} + \beta_8 \text{dummy for top 5% performer by style} + \beta_9 \text{dummy for open to new investment} + \beta_{10} \text{dummy for open to non-accredited investors} + \epsilon.

The regression specifications are identical except for the dependent variable measuring family performance. Specification 1 (2) uses a four-factor alpha assuming an equally-weighted (value-weighted) portfolio of funds in each family. Specification 3 (4) uses an eight-factor alpha assuming an equally-weighted (value-weighted) portfolio of funds in each family. In Figure 4, the coefficient on focus is significantly negative in all specifications, implying that families have incentives to diversify across fund styles to increase market share. Also, the coefficient on categories is significantly positive in all four specifications, implying that offering more unique fund styles improves market share. Finally, the prior performance of the family is also significantly positively related to market share. While these results suggest that families face competing incentives (since having more funds in a family increases market share per Figure 4, but reduces performance per Figure 2), they are not conclusive since regressions are performed at the family level, and not at the fund or style category level. Furthermore, since market share increases with family performance, managers have incentives to perform well, consistent with the objectives of their investors. We also reperform the regressions excluding one-fund families. The findings are consistent with Figure 4.
dummy at the family level $\beta_{2\text{open}}$ to non-accredited investors dummy of category j in family $\beta_{2\text{open}}$ + average family lockup period in months at the family level $\beta_{2\text{open}}$ + average family lockup period in months of category j in family $\beta_{2\text{open}}$ (6)

This regression includes time trend variables. The control variables are measured at both the family level and the style category level (within each fund family). In Figure 5, the coefficient on related is significantly positive in all specifications, indicating that a family’s market share is higher for style category(ies) within a family in the manager’s core competency. Earlier Figure 3 results indicate that these same core competency style categories have the best-performing funds. Since both market share and performance increase when managers focus on their core competencies, both managerial and investor incentives can be achieved. Figure 5 also finds a significant positive relationship between market share in a style category and the number of funds in that category, also implying that focusing on core competency funds increases market share. Finally, the more experience a manager has in a particular category, the more assets the manager attracts to that category. Our results are generally consistent with Khorana and Servaes (2007).

Conclusion

We examine the relationship between hedge fund family membership, performance, and market share. Unconditionally, families with more funds underperform families with less funds. However, regardless of size, families that focus on their core competencies have good ‘core competency’ funds but poor ‘fringe’ funds (funds outside of their core competencies). In other words, managers that do not venture outside their skill sets outperform.

We also investigate the determinants of family market share. Families with more diversity in their fund offerings have higher market share. Families with good past performance also have higher market share. Hence, fund managers must strike a balance between improving market share and maintaining good performance. One way that managers can achieve this goal is to focus on their core competencies, since we show that for these funds, both performance and market share is strong. Hence, managers would do well to stick to their core competencies when opening new funds.

Our results suggest the following. First, hedge fund investors should not unconditionally avoid multi-fund families. Rather, they should select funds from families in which the majority of the family’s funds are core competency funds. Second, regardless of family size, hedge fund investors should avoid funds outside the family’s core competencies. Finally, hedge fund managers should grow their families by focusing on new funds within their core competencies, since these funds attract the largest market share and are the best performers.

References

- Guédi, J. and P. Papastakoudi, 2005, “Can mutual fund families affect the performance of their funds?” University of Texas at Austin working paper
Abstract
This paper discusses the causes of the current banking crisis, arguing that it is primarily a crisis of confidence and not of bank assets quality, which is far better than either accounting statements or general media portrayal would have us believe. It then examines alternative public sector interventions in the banking sector, distinguishing solvency, liquidity, and funding support (most analyses omit discussion of funding support, which is a serious omission since the root cause of the current crisis has been the problems the banks face in funding long-term assets). The paper recommends using two main tools to combat the crisis. The first is mass purchase and/or insurance of credit assets, focusing on the best quality assets that are undervalued but relatively low risk. It may be easier for this to be undertaken by central banks in the first instance. They could easily buy, for example, the majority of the U.S.$5.4 trillion outstanding stock of senior tranches of structured and loan backed securities. The second stage is the introduction of long-term government backed insurance (effectively replacing the failed protection offered by the mono-lines and AIG) whenever long-term assets are financed using short-term wholesale borrowing. With this backing the overhang of structured credit can be returned to the private sector. Such long-term insurance can help support strong growth of bank lending and economic recovery post-crisis and help establish a less dysfunctional future relationship between government and the banking industry.

1 This paper draws on my forthcoming book ‘The fall of the house of credit’ to be published by Cambridge University Press in 2009.
The proposal of this paper — summary

The argument put forward in this paper is that governments and central banks can reverse the economic slump, provided they make a coordinated effort to address the underlying problems, which are maturity mismatch and the lack of confidence in bank assets and liabilities that this engenders. The way to restore confidence and deal with the maturity mismatch is for the government to support banks against extreme credit and liquidity losses. This is in fact what the U.S. and U.K. authorities are already doing, but much more needs to be done. The rationale for this policy has not been properly communicated, the scale of action can and should be much larger, and to be fully effective other governments and central banks around the world need to adopt a similar approach.

This paper specifically proposes using insurance against extreme loss to support banks. This should be provided on the best quality senior tranches of structured credits and against pools of on-balance sheet loans. But the precise details of how support is provided (purchase of assets, guarantees of assets or of liabilities, insurance against extreme outcomes, recapitalization of banks, or nationalization so that the public sector is responsible for all risks) are less important than that such support is given unstintingly and immediately and that the thinking behind these actions, and the fact these actions impose no debt burden on taxpayers, is explained clearly to investors and voters alike.

Why should government promises of money in the future, rather than government money now, make such a difference? The reason this works is that the primary reason for the global contraction of credit is not poor quality of bank assets; most bank borrowers are reputable and sound. The problem is simply that fear of future losses is undermining credit markets and bank balance sheets. The fear is self-fulfilling and cumulating. The resulting global contraction of bank credit threatens to create a massive economic slump and thus result in the very losses that banks fear in the first place. The good news is that such a self-fulfilling fear is easily dealt with. Remove the fear of extreme loss, which means that banks start to lend again, and the extreme loss does not materialize.

How might be done? An analogy can be drawn with insurance against catastrophic climate events. If insurers are concerned about excessive exposure to large risks, say for example hurricane damage on the gulf coast of the U.S. and Mexico, then they reinsure these risks with specialized global insurance companies, or using global securities markets through the issue of so called ‘catas trophe’ bonds. What is needed now is similar reinsurance against extreme credit losses. But this cannot be provided by private sector financial institutions because in the circumstances when they are asked to pay out their own solvency is in doubt (AIG is an example). Consequently, what is needed to end the current global credit crisis is for the government to step in and provide this reinsurance instead. This will in turn reopen the markets for trading of credit, and remove the funding fears that are reducing bank lending.

Other arguments — either too pessimistic or too optimistic

This argument can be opposed two other much more commonly held views about the crisis, one excessively pessimistic and the other rather too optimistic. The excessive pessimism is reflected in the widespread fatalism about the crisis. There is little can be done to prevent a credit and economic collapse. We are coming out of an uncontrolled credit boom and like every previous credit boom it must inevitably be followed by a credit bust. The global economic growth of the past two decades was driven by unsustainable increases in household consumption and household debt, a boom in borrowing which must now be reversed. Banking decisions should not be left to the market, with bank management and employees free to pursue their own interests. Instead banks must be tightly regulated and controlled to ensure that they take only limited risks and there is no recurrence of the present crisis. Banks worldwide must deleverage, sharply reducing both their lending and borrowing.

If a deep economic slump is to be avoided then it is necessary to fight back against this deeply pessimistic line of argument. Deleveraging of this kind is accelerating the downturn but it can be brought under control. The correct lesson from the events of the past two years is not that banks took on too much risk (while some did take on too much risk the majority were prudent), but that they relied far too much on short-term wholesale borrowing, exposing the entire industry to the risk of a loss of confidence in bank assets and liabilities. This has in turn exposed the inherent fragility of banking, since banks always have many short-term liabilities supported by long-term assets.

The argument of this paper is also opposed by the continued optimism, still found amongst many politicians, arguing that what we need is a large scale fiscal stimulus, which will be enough to get our economies moving again. Their argument is that recessions are always short-lived, that once bank losses have been written off, then the growth of credit and of incomes and output will be restored. In the meantime, we can cut taxes and increase government expenditure in order to prevent loan losses rising too much, and then we will grow out of the credit problems. Regrettably the facts speak against them. While most recessions are short-lived some are not, notably the U.S. in the 1930s and Japan in the 1990s. We need to take the actions that ensure this is only a recession not a slump.

Some fiscal stimulus is appropriate, because this helps prevent large scale bank losses and the possibility of an economic collapse. But a purely fiscal response to the crisis is both inadequate and
Public sector support of the banking industry

costly. Governments must take over most of the lost funding of bank balance sheets. Governments must pay out enough money to households to replace most of their borrowing. The consequence is a dramatic rise in government indebtedness. The U.S. Federal government debt or U.K. government debt would have to rise to a similar degree as that of Japan over the last fifteen years, where the stock of government debt has climbed to 180 percent of national income. Taxes would then have to increase to unprecedented levels in order to service this debt and capital would take flight to other countries. The outcome is a long-term economic decline with slow growth and increasing economic, social, and political divisions.

What the optimists are ignoring is the cause of the crisis, which is the fierce squeeze on bank balance sheets caused by fear of future loss, and the resulting collapse in traded credit markets and closure of bank funding markets. The very large sums of government money being used to increase bank capital, to guarantee bank liabilities, and to directly support the troubled credit markets are helpful but these policies have to be pursued much further, on a far greater and more global scale, in order to end the squeeze on bank balance sheets. Once the fear of extreme loss on bank lending is ended then, over coming months, the contraction of credit will stop and the slump of world economic activity will be reversed.

This paper is, however, at bottom in the camp of the optimists. Yes, losses and write-downs are large. By the end of 2008 banks worldwide have reported credit losses and write-downs of around U.S.$1 trillion on mortgage and other lending. Allowing for falls in market prices of traded credit exposures and making loan provisions on a conservative basis to take account of the anticipated economic slowdown, the International Monetary Fund projects much higher eventual losses and write-downs. Their latest update estimates that there will be over U.S.$2 trillion dollars of losses. But what is essential to understand is that these figures for total loss and write-downs grossly exaggerate the eventual outturn. Around half of these figures are accounted for by temporary write-downs of very safe senior tranches of structured credits that will, eventually, be fully repaid. This is a consequence of the collapse of prices on traded credit markets, in turn a consequence of the gross maturity mismatch of the industry as they pursued a policy of borrowing short in wholesale markets in order to lend long. Consequently, the highest projects of losses and write-downs reflect loss of confidence and fear of future losses and not a rational conservative assessment of the eventual outcome. Actual loans losses are perfectly manageable. Annual global bank profits before the crisis broke were close to U.S.$500bn. Most banks can absorb their own share of these losses without needing long-term infusions of capital; though temporary recapitalization to restore confidence may be appropriate. Those banks that cannot absorb their losses can be saved through acquisition by a stronger competitor. In the few cases where an acquisition cannot be arranged, then governments can take over.

What went wrong?²

As we know, the current global banking crisis originated with losses on U.S. sub-prime mortgage-related securities, losses that first emerged with the slowing of the U.S. housing market in the second half of 2006. The early casualties of the crisis were institutions pursuing rather unusual business models. Off-balance sheet trading funds with large holdings of mortgage backed securities, such as those operated by the German banks IKB and Sachsen Landesbank, were forced to close at a loss. Banks such as Northern Rock, which were relying on the sale of mortgage-backed securities, rather than retail deposits, to finance extreme rapid growth of their loan books, were no longer able to finance their loan portfolios. Not long after this, some serious failures of governance and risk management emerged. The failure was not the emergence of losses on mortgage exposures. Banks take risks so they must expect to make losses some of the time. Occasional losses on lending or on trading or investment portfolios are normal. Sub-prime lending in the U.S. was clearly very risky. The problem was that a handful of institutions, including some very large banks such as UBS, Merrill Lynch, and Citigroup, had very large exposures to this one market – sub-prime and other high-risk U.S. mortgage lending – and had made a lot of investment in the higher yielding but higher risk types of securities. The losses that these banks experienced were extremely large relative to their annual earnings and ‘capital,’ the difference between the assets and liabilities on their balance sheet.

But this was far from being the end of the crisis. Over subsequent months both poorly run and well run institutions alike got into difficulties. There was something like a U.S.$3.5 trillion overhang of illiquid structured assets, financed using repo and other short-term borrowing. This, combined with deterioration of the global economy, made it increasingly likely that quite a few banks would face problems financing their loan portfolios in the future. Some might even turn out to be insolvent. These increasing fears about the future performance of banks worldwide crystalized in the global financial panic of September and October 2008, which was triggered by the failure of Lehman Brothers. This was an unstable situation and would surely have been triggered some other event even if Lehman had been supported and was not stopped by the decision the following day to support AIG.

Even with promises of large scale government support this loss of confidence can be expected to get worse. There are several reasons for this. As the global economy goes into a steep downturn, companies will suffer revenue losses and households loss of income. They will then run down their cash holdings. They will also turn to banks for emergency borrowing, drawing down lines of credit or increasing credit card balances. This flow of money out of the banking system will worsen the squeeze on bank balance sheets, further reduce the availability of bank credit, and worsen the world wide economic downturn. Bank funding problems will

² This analysis of what went wrong is similar to that provided by Marcus Brunnermeier in his superb review of the crisis, “Deciphering the liquidity and credit crunch 2007-08,” a paper that he continues to update as the crisis has evolved (the latest version can be found on his homepage http://www.princeton.edu/~markus/).
be made yet worse by the maturing of medium-term bank bonds, money which banks will be unable to refinance because of fears about future bank losses.

Where did the money go?
Where did all the money go? The explanation is simple: banks create money whenever they lend. When a bank lends, say, $200 there is an increase of $200, both in a customer’s account and at the same time in the loan assets of the bank. So new money has been created. Now this money has gone simply because banks are doing less lending than before. Banks create money and there is now much less bank money than before. But this explanation omits one key constraint on a bank’s ability to create money. The money credited to the customer account does not stay in the customer’s bank, sooner or later it will be spent (no point in taking a loan and not spending it) and so it has to be funded. The bank that gives a loan needs to have a source of funds it can tap in order to replace the money that leaves the customer account. The traditional source has been retail funds coming into the bank. For many years banks avoided lending out much more than their retail depositors had brought in.

The new credit markets have changed this, allowing banks to lend out a great deal more than they bring in from retail depositors. They could borrow large amounts of wholesale funds from large companies, institutional investors such as pension funds and life insurance companies, and from overseas governments and sovereign wealth funds. The ‘technology’ behind this wholesale borrowing used mortgage-backed or similar asset-backed securities to borrow long-term and also as collateral (or at least as an assurance of liquidity) for short-term borrowing. It is these wholesale markets that have allowed banks to recycle the large volumes of global savings from high saving countries such as Japan, West Germany, China, Saudi Arabia, and also a number of other high saving exporters of natural resources or of manufactured goods. Residents of these countries, including banks, government agencies, and investment funds, invest in financial assets in the borrowing countries. Some of those purchases are mortgage-backed securities and bank bonds, directly funding bank loan books. But indirect funding has been more important, with much of this saving ending up in short-term money markets and reaching banks through intermediaries, or placed in long-term government and corporate bonds, pushing up their price and displacing other investors who ended up instead holding bank securities or investing in money markets.

In order to access this funding banks created special credit structuring departments, who assembled the new traded credit instruments. Banks also held large amounts of these same securities in their trading and investment portfolios. As long as borrower and investor appetite for credit remained strong these new activities were highly profitable. When the credit boom collapsed the structuring came to a halt and the value of bank credit portfolios collapsed. Does this mean that the new credit instruments were useless and all the profits earned from credit structuring and trading were illusory? In fact, the new credit instruments have many virtues. They allow credit risk to be separated from other risks and bought and sold amongst banks and other investors. The trading of credit makes it easier for financial institutions to finance more credit exposures. The new credit instruments allow relatively risky borrowers, such as restructured firms or lower income borrowers, to gain access to credit, a welcome development provided these borrowers know what they are doing and the risks are properly priced.

Innovations are, inevitably, accompanied by mistakes and false starts. Some banks did not understand as well as they should have what they were doing. The more complex restructured credit securities, where structured credit securities were repackaged within further securities, were overly complex. They seem to have been created purely for the purpose of confusing traders and investors. In that respect they were all too successful. Much of the losses reported by the large banks, UBS and Merrill Lynch, were because they held large portfolios of these especially risky instruments. Does this mean that all the new credit instruments were entirely rotten? No. The great majority of the new structured paper is fairly simple and not so difficult to understand. There is a wealth of information on these securities, for anyone who has access to a Bloomberg screen or similar information services. Most of these securities are safe. Provided we avoid a worldwide economic collapse, the better quality paper will be fully repaid. That is in fact the whole point of structuring, to separate the credit risk and manufacture safe, effectively risk-free, securities. Banks and investors understood most of what they were buying and had access to all the tools they needed to monitor and assess their investments.

If most of the new credit securities were sound, then what went wrong? The biggest weakness of the new credit arrangements was that banks assumed that there would always be a liquid market for trading these securities. If this were true, that securities could always be sold, then it was safe to finance portfolios of long-term credit securities using large amounts of low cost short-term borrowing. Banks pursued this flawed strategy on a huge scale. As stated above, it appears that banks worldwide held at least U.S.$3.5 trillion (about one quarter of the U.S. national income) of supposedly high quality credit securities financed short-term. But this maturity mismatch, borrowing short to hold long-term assets, is an inherently risky portfolio strategy, susceptible to collapse whenever there is a loss of investor confidence. The growing losses on the U.S. sub-prime mortgage lending triggered a loss of confidence in all forms of structured and mortgage-backed credit. This had a global impact because so many banks worldwide held these instruments. They all tried to reduce their exposures at the same time, and as a result there were too many sellers of these securities but hardly any buyers. Sellers but no buyers meant that trading slowed.
to a halt and prices collapsed. The liquidity which all banks assumed they could rely on was no longer there.

But why were there no buyers from outside the banking system? Because of the market freeze, prices of senior structured and mortgage-backed securities had fallen well below any reasonable estimate of their underlying value. They should have been attractive investments at these bargain prices. But non-bank investors did not understand these instruments very well and if they did perceive opportunities they were subject to regulatory and other constraints that prevented them purchasing assets when prices are low, especially the so called ‘solvency regulations,’ which are supposed to help financial institutions avoid insolvency but actually have the opposite effect, exaggerating swings in market prices and making it more likely that institutions will fail in a financial crisis. Consequently, the underlying problem was that banks (wrongly) assumed that they could always limit their exposures by cutting back on their portfolios, for example by selling loans to other banks or taking out ‘hedges’ (insurance contracts) against further losses. But this idea of active credit portfolio management does not work when all banks are in trouble. A useful analogy is with a fire in a crowded hotel lobby. Everyone tries to get out of the revolving doors, but only a few can do so at any one time and in the crush everyone is trapped.

Other reasons why banks have stopped lending
This is the main explanation of why banks are now so reluctant to lend to customers. Only a couple of years ago they were using the new credit instruments to raise ample funds and falling over each other to offer their customers money. Now they cannot use these instruments to raise funds and so are very reluctant to make new loans.

This cessation of lending has resulted in an increasing chorus of political and media criticism of banks, on both sides of the Atlantic, for continuing to reduce lending, even when they have been the beneficiaries of substantial packages of government support. There are even some veiled threats, for example to nationalize banks if they do not lend more. But the reluctance to lend is perfectly understandable.

Here are some other important reasons why banks will not lend:

- Losses on past lending are rising. Banks are naturally more cautious today than they were in even the recent past. Relatively risky borrowers who might have easily obtained a loan two or three years ago will now be refused. This is one of the main reasons why bank lending always rises in booms and is then cut back when boom turns to bust.

- Loan losses and the large write-downs on mortgage-backed and other structured credit securities are reducing bank capital. Banks need to ensure that their assets, loans and securities, are worth a lot more than their deposits and other liabilities. The difference between the two is bank capital. If bank capital falls to a low level compared to the risks the bank is taking, then wholesale and maybe even retail depositors will lose confidence in the bank and withdraw funds. So if bank capital declines a long way a bank has to reduce its risks, such as lend less.

- A tightening of bank capital regulations now that the economy is in difficulties is worsening the shortage of bank capital. At the end of 2007, bank regulators in many countries, but not the U.S., adopted a new approach to setting what are known as minimum regulatory capital requirements, making them much more sensitive to the riskiness of the banks loans. Now that the world economy is deteriorating rapidly these capital requirements are increasing, leaving banks with less free capital above the minimum and hence with less room to maneuver. To free up capital they again lend less.

All these factors are making banks more reluctant to lend, but the basic reason is a self-fulfilling fear. Investors and banks fear the possibility of extreme losses on credit instruments, even those that seem to be fairly safe. They, therefore, will not hold or trade them and the markets for both new issues and trading have closed. Banks also fear the possibility of a very deep and long lasting downturn that will cause substantial losses and, even more problematic, cause a loss of deposits and increase in lending that they will find extremely difficult to fund.

Note that the reason banks will not lend is not, as many inaccurately suggest, because banks are fearful of each other but rather that they are fearful of themselves. Fear of other banks does not matter so much because banks can and do lend to each other via the central bank. The problem is that banks fear what might happen six or twelve months hence. Will they experience more losses? Will they suffer deposit withdrawals or drawing down of lines of credit? They are very unsure of the prospects for their own businesses and even though they are now liquid and well capitalized, they remain reluctant to lend.

Governments, central banks, and others have made strenuous efforts to deal with these problems. Governments, in October of 2008, provided large sums of additional bank capital and have also offered extensive guarantees on a good chunk of medium-term bank wholesale liabilities. Central banks have provided very large amounts of short-term loans to banks so that they can now borrow almost all that they need for day to day purposes, but they have not succeeded in ending the problems of the money markets. Accounting rules have been tweaked to offer banks at least some protection from the big changes in the accounting measures of capital caused by ‘market to market’ valuation. Despite these measures the decline of bank lending and shortage of money continues. None of them deal with the biggest problem facing banks, the squeeze
the closure of the markets for new issue and trading of securitized and structured credit.

These problems are getting worse, month by month, because as banks restrict lending they trigger more loan losses, more write-downs of market values, and lowering of bank capital. The squeeze on bank balance sheets is also worsening as banks experience continuing run-offs of deposits and continuing drawing down of lines of credit, as corporate and household outgoings exceed their incomes, and as long-term bond issues mature.

Fiscal and monetary policy in a banking crisis

There can be no doubt now that this is not a ‘normal’ business cycle downturn. There will be no rapid recovery in spending because the normal route to such recovery, lower interest rates and increased consumer and household spending, is no longer operating. The constraints on bank lending ensure that. There are actually two reasons for the depth of the downturn and the weakness of the recovery. The first is structural. We have reached the culmination of a major shift in the world’s economic resources into providing consumer goods and services for many deficit western economies — especially the U.S., the U.K., Australia, Spain, and Ireland. This consumer boom has now reached its limits.

Personal ‘savings rates,’ the proportion of post-tax personal income that is saved with banks, pension funds, or life insurance companies, in these borrowing countries has fallen to historic lows, from long-term averages of around 6% in past years to zero today. The required structural shift is obvious, the savings short fall must eventually be reversed and this means that consumer spending, as a share of income, must fall by around 5%. The key to achieving this outcome, without huge costs in terms of lost jobs and failed businesses, is to adjust as far as possible by increasing output and income, not by outright reductions of consumer spending. There is a mirror to this problem of unsustainable consumer spending and insufficient savings in the West and the challenge of growing out of this problem by making the Western economies more efficient and more productive. This mirror is the reverse pattern in surplus economies with an excess of savings, not just China but also Japan, West Germany, and many other emerging manufacturing and resource exporters. We also need to shift to a new pattern of more consumption and government expenditure in these high savings economies, as well as more production and savings in the borrowing economies.

The second reason for the severity of the downturn is the uncontrolled speed with which it is now taking place. Bank lending, and hence consumer spending, in the West has first slowed and is now falling precipitously. Banks were the middle men in this global recycling of savings. Banks can no longer issue mortgage-backed or other structured securities. Nor can they use these securities as collateral to borrow in money markets. This means they can no longer recycle the world’s savings as they did before. What we are now witnessing is the consequence, a savage reduction of both bank credit and Western consumer spending, with savings levels rising a percentage point or more within months, and a corresponding fall in output and incomes, a decline in demand too great to be offset by standard stimulus such as government spending. Such an extreme correction is creating a punishing decline of exports from the surplus economies and a jarring slowdown in world economic activity — far fewer jobs and far more unemployment, much lower incomes and much greater poverty and social deprivation.

The other side of increased consumer saving is a punishing financial deleveraging. Neither banks nor financial market participants can any longer borrow money on the scale they once could and this is being reflected in declining liquidity and falls in value of many securities and investment funds. Simple ‘back of the envelope’ calculations show how large the economic impact of this increased saving and financial deleveraging could turn out to be. Suppose that there is an increase in savings rates of 4%, enough to bring them back close to sustainable levels, and a decline in demand of 3% of national income. There is a ‘domestic multiplier’ effect of such a decline of consumer spending, taking account of second round effects because when I spend less money, someone else has less income and so cuts their spending again. This domestic multiplier is around 1.5 and so if the consumer expenditure shock were affecting a single country output and incomes would fall by around 4.5%. But allowing for international transmission and declining world trade, the impact will be considerably larger, perhaps around 2.5. Consequently, without government action, we can expect a decline in world economic activity of around 7.5% over the coming three years. If fears about future economic security and the illiquidity of many financial markets grow then the rise in savings and decline of output could be even larger. A ten percent fall in real economic output and unemployment rates with fifteen percent of the labor force out of work are not out of the question. What can be done to prevent this outcome?

Central banks can provide commercial banks with liquidity but not with funding

A key point, one that has not been sufficiently appreciated in the many debates about the crisis, is that central banks cannot fund the entire commercial banking sector. To follow this point it is necessary to understand the difference between liquidity and funding. For a commercial bank being liquid means having sufficient balances at the central bank, or sufficient access to lines of credit in the short-term money markets, to easily be able to meet any prospective payments. Liquidity is all about the asset side of the balance sheet, owning or being able to borrow sufficient liquid assets, especially reserves with the central bank, in order to make...
payments to other banks. Funding is quite different from liquidity. It is all about the liability side of the balance sheet. It means being able to attract sufficient stable retail and wholesale funds, at a reasonable cost, to finance current and prospective lending.

Central banks can create liquidity for commercial banks at the stroke of a pen (or rather nowadays at the click of computer mouse). They simply credit additional funds to the reserves accounts the commercial banks hold with the central bank. The central bank does not normally give these funds away. Instead, it tops up reserve balances either through a collateralized loan or by selling securities. But this liquidity creation makes no difference to total bank funding.

The central bank can still help provide funding to some individual banks, the weakest banks that may no longer be able to fund themselves in the market. How does the central bank do this? The answer is by accepting additional reserves from strong banks that can fund themselves, and then lending this money on, of course on a collateralized basis, to the weak banks that can no longer fund themselves. This is exactly what the central banks did in September and October of 2008. As the money markets collapsed, central banks substituted themselves as intermediaries, accepting large scale increases in reserves from some banks and lending this out to other banks.

Supplementing monetary policy with fiscal policy

The banking crisis is now creating a savage reduction of income and expenditure. This can be limited using either fiscal policy or unorthodox monetary policies or some combination of the two. A direct way of maintaining income and expenditure is for the government to make substantial cuts in rates of taxation, such as income and sales taxes, or sending households tax rebates. In effect, government borrows on behalf of its citizens and they increase spending even though they are unwilling or unable to borrow themselves. This borrowing could be financed by issuing bonds, or if bonds are difficult to sell by borrowing from the central bank (the central bank accepting government bonds in return for crediting the accounts held by the government with the central bank). Given that there is no immediate danger of inflation and selling bonds on the open market pushes up long-term interest rates and so ‘crowds out’ long-term private sector borrowing, borrowing from the central bank may be preferred.

A similar suggestion, favored in some academic circles, is for the central bank to distribute money to citizens, using the vivid analogy coined by Milton Friedman, a ‘helicopter drop’ in which money is scattered to one and all. But in many ways the impact is rather similar to a government-financed stimulus, with the government raising funds by borrowing from the central bank. The difference is that the central bank ends up with a negative net worth, a large hole in its balance sheet that will eventually have to be filled either by net payments from government or by allowing inflation to rise and using ‘seignorage’ on the note issue to restore central bank net worth. Either way, consumers are paying back later what they get today. The helicopter drop may be preferred to a fiscal transfer for political reasons (no need to get approval from Congress or the Houses of Parliament). It may also have a somewhat more powerful impact on spending if households are less aware that the money will have to be paid back.

The Japanese government in the 1990s used fiscal policy to support monetary policy, although they placed greater emphasis on government expenditure on infrastructure such as roads, railways, and buildings rather than tax reductions. Although Japan did experience falling prices and output stagnated, a cumulative debt deflation with continually falling output and prices was avoided. There is still debate about whether Japan did enough. There has been little growth in overall economic activity in Japan for more than fifteen years. There was at last a modest recovery but this has been snuffed out by the current crisis. Some observers argue that more aggressive fiscal expansion could have triggered renewed borrowing and supported sustained growth in the Japanese economy. Others, including the Japanese authorities, are more cautious, taking the view that further fiscal stimulus would not have resulted in permanent gains in output and employment and would have worsened the already stretched financial position of the Japanese government.

Unorthodox monetary policy

As has been pointed out by the Federal Reserve Chairman, Ben Bernanke, amongst others, central banks have unorthodox tools to expand the central bank balance sheet and monetary aggregates, which can be applied even when interest rates fall to zero. Since December 16th, 2008, the Federal Reserve has begun to pursue exactly these policies, in what chairman Bernanke has described as ‘credit easing.’ As we have seen, the central bank normally has a responsibility for draining reserves to stop overnight interest rates falling below the policy target rate. Whatever it gives with one hand by way of liquidity it must take away with the other to bring short-term interest rates back up to the target policy rate of interest. So normally reserves are adjusted to bring short-term interest rates in line with the official policy rate. Once the official policy rates falls to zero this is no longer necessary. The central bank loses control over interest rates but gains control of the quantity of reserves. It can increase bank reserves and hence the size of the central bank balance sheet as much as it likes, to an almost unlimited extent, by buying securities, matched by increases in both wholesale deposits with commercial banks and commercial bank reserves at the central bank. Market interest rates cannot be pushed below zero so the official policy rate target can still be set, as the Federal Reserve has done, in a range close to zero.

In this way the central bank increases the money supply even when interest rates hit their zero-bound. Here is an illustration. To conduct a quantitative easing, a trader employed by the central bank buys a government bond for £1000 from an investor such as a pension fund. To settle the trade, the pension fund's cash account with a commercial bank is increased by £1000 from the central bank and to settle this payment, the commercial bank's reserve with the central bank is in turn increased by £1000, matching the £1000 increase in central bank assets. The problem is that it is doubtful if this particular transaction does much to increase bank credit. The commercial bank has more short-term deposits, so monetary aggregates have increased, but it is unlikely to lend this money out, when as now banks have too many short-term liabilities and too many illiquid and undervalued long-term assets. When quantitative easing was attempted in this way in Japan from 2001 until 2005, the main impact was indeed to increase reserve assets rather than bank credit.

What the central bank has changed, though, is the composition of public sector debt, broadly defined to include the debt of the central bank. There is less long-term and more short-term debt, including central bank reserves, in the market. With fewer long-term bonds, long-term interest rates may fall somewhat. This means that the central bank is likely to lose money, buying bonds at a premium high price and then, when the easing is unwound, selling them at a discounted low price. This has economic effects because the loss making trade subsidizes long-term borrowing by the private sector. The effect is similar to that achieved when government subsidizes long-term borrowing.

An example of this credit easing is the U.S. Federal Reserve's announcement in November 2008 of a large program for purchase of agency guaranteed mortgage bonds, issued by Fannie Mae, Freddie Mac, and other 'government sponsored' enterprises. This does not create a credit risk for the Fed because the underlying mortgages are guaranteed. This has, in turn, lowered long-term mortgage rates and had a notable impact on mortgage lending (although it is unclear how many of these mortgages were actually used for new house purchases rather than just for refinancing).

Recognition of bad debts and recapitalization

Sometimes liquidity support is not enough and banks face insolvency. Insolvency must be recognized and promptly dealt with. The most widely accepted blueprint for doing this is that used by the governments of Finland, Sweden, Thailand, and South Korea in response to their banking crises of the 1990s. Those countries, in their different ways, moved quickly to recognize bank losses, to transfer bad assets off the bank balance sheets, and provide new public sector funds to recapitalize their banks and, where necessary, take them into public ownership. One of the main reasons why Japan has had such difficulties dealing with its own banking crisis is that it avoided recognition of bad debts, allowing banks to lend a great deal of further money to borrowers that were already insolvent. Delay in recognizing and resolving bankruptcy of borrowers was counterproductive, extending the length and depth of the crisis. Similar problems arose during the U.S. Savings and Loan crisis of the 1980s, forbearance greatly increased the scale of eventual losses.

Recognition of bad debts and recapitalization is also needed in order to deal with the present crisis. But this is not as easy as it might seem. The major problems are working out which debts are bad and how much they are worth, in order to recapitalize the banks. The key point is that before the standard blue print can be applied, it is necessary to deal with the problems in traded credit markets. Only then will the actual scale of losses, which are certainly much less than current accounting valuations suggest, be clear. There are some parallels between the Scandinavian banking crises and the current global banking crisis. Both crises are systemic, threatening the provision of basic banking services, and so demand government intervention. The approach introduced first in the U.K. in October of 2008 and adopted by many other countries is similar to that applied in Sweden, leaving banks in private hands but acquiring shares in the banks that have lost most money.

But the parallel is imperfect and these policies cannot, on their own, deal with the situation. The key differences are as follows:

- This time around the crisis of confidence in the banks and the intervention of the authorities have occurred at the very peak of the economic cycle, and the subsequent recession has been caused by the weakness of the banks. In Sweden and Finland, in contrast, the recession was caused by external macroeconomic shocks (fall of world paper prices, collapse of the Soviet Union) together with misguided attempts to defend an overvalued exchange rate. The really severe banking problems and the need for intervention came at the very end of this recession, with recovery already beginning because of large exchange rate depreciations.
- The programs of support in Sweden and Finland, recapitalizations and transfer of assets to bad banks, only worked because the supplementary tool of exchange rate depreciation meant that their economies were recovering and losses would not get worse, a tool that is not available to deal with a global crisis.
- Current bank losses and write-downs are due not just to poor loan performance but also to fear and illiquidity. The loan losses in the current banking crisis, as a proportion of bank balance sheets, are much lower than those that arose in Sweden or Finland, but because we are only at the very beginning of recession the potential for losses are very large. This makes it extremely difficult to agree on the values used to recognize bad debts.
- The Nordic countries were aided by a strong cross-party political consensus on how to deal with the crisis. Policies in the U.S., the U.K., and elsewhere for dealing with the current crisis are ham-
pered by continued political bickering as politicians, both in and out of government, seek to take political advantage of the situation.

This is not to say that the government support of the banks of October of 2008 was not needed, but had other alternative policies been pursued at the same time, the scale of support required might have been much smaller. And pursuing other policies may allow banks to be returned to fully private ownership much quicker than would otherwise be the case.

Using fiscal and monetary policy to support credit markets
Since this crisis is different from that of Scandinavia, a different response is needed, using fiscal and monetary policy to directly support credit assets and credit markets and hence ending the crisis of confidence and illiquidity that are behind the cumulative credit collapse. How is this to be done?

One way to support credit markets is for the central bank to purchase undervalued credit assets
Increasing the central bank balance sheet to purchase government bonds affects credit markets only very indirectly, through long-term interest rates. There is a bigger impact on credit markets if the central bank uses its balance sheet to buy not government bonds but better quality currently illiquid and undervalued structured and mortgage-backed securities (i.e., the same illiquid securities that are the root of the funding and balance sheet constraints that inhibit bank lending). By purchasing these securities off the banks, the central bank directly strengthens bank balance sheets and so allows banks to expand their lending. Moreover, as the economy recovers credit spreads will fall and so the central bank can make a profit, rather than make a loss as it would do from purchasing government bonds. The central bank can also purchase other credit risky assets such as commercial paper or corporate bonds. In other words, the policy of 'credit easing' now being actively pursued by the U.S. Federal Reserve.

Perhaps the clearest way to present this point is to put the question in another way. Normally central banks use the nominal interest rate as the instrument of monetary policy using open market monetary operations to keep very short-term market rates of interest close to their announced policy rate. Once the announced policy rate falls to zero they can do more, they can now use a further instrument provided that their choice is consistent with short-term interest rates remaining at zero. The question then is what will be the most appropriate alternative instrument of monetary policy during the period when money market interest rates are reduced to their zero floor? Aggregate bank reserves or money stock are poor choices for the monetary instrument since in present depressed circumstances they can increase by huge amounts without impacting credit or expenditure. A better choice is market credit spreads. The Bank of England Monetary Policy Committee or the Federal Reserve Open Markets Committee or the Governing Council of the European Central Bank can use their regular meetings to announce their preferred levels for average market credit spreads. Monetary operations can enforce this decision. By setting credit spreads at appropriate levels, this will put a floor under market values, restore credit market liquidity and economic activity, and make a handsome profit to boot.

Both the U.S. Federal Reserve and the Bank of England are now adopting policies of this kind. In fact these policies can be pursued even when monetary policy continues to operated in the orthodox fashion with the central bank maintaining close control over very short-term interest rates. Instead of the central bank increasing its reserve base to purchase credit risky assets off the banks, it is possible for the government to sell either Treasury bills or long-term government bonds in the market and deposit the proceeds with the central bank, which then in turn uses this money to purchase credit risky assets. Now there is expansion of the stock of outstanding government debt instead of the stock of base money. But however it is achieved, government-backed or money-backed, large scale purchase or other techniques to support the value of credit risky securities is a necessary policy for restoring investor confidence, improving bank balance sheets, and getting credit flowing again.

Using a pooled bidding process to avoid adverse selection
There is a problem with large scale purchase of credit assets, a problem that in insurance is known as ‘adverse selection.’ A well-known example from medical insurance is offering protection against an extreme illness such as heart disease. Adverse selection takes place because healthy individuals with low risk of heart failure view the insurance as expensive and so tend not to purchase it. This means that there is adverse selection, the people who take out the insurance are at greater risk of a heart attack than the population at large. One solution to adverse selection is to tailor the cost of the insurance to the risk, so in the medical example the costs of the insurance might be reduced if the individual passes a medical examination. Exactly the same problem arises when the central bank purchases senior credit securities. But the central bank does not have enough information about the risks of default on individual securities so it cannot tailor the price it pays in this way. If it is not careful it will end up purchasing all the poor quality securities and none of the better ones. As a result it could end up losing rather than making money.

This sounds like a serious problem with the public purchase of credit related assets. But the central bank is a monopoly purchaser of these securities and it can use this monopoly to get around the problem of adverse selection. For example, the central bank can
The move back to orthodox monetary policy

Suppose the central bank shifts to unorthodox monetary policy, allowing interest rates to languish close to zero, and instead radically expands the stock of reserves to purchase a range of assets and thus stimulate credit and investment. The central bank must then be ready, once there is sustained economic recovery, to reduce reserves and increase nominal interest rates. Otherwise it risks a cumulative rise of inflation and inflation expectations. This is not so difficult when as in Japan the central bank has purchased government bonds. These can be sold relatively easily in order to reduce commercial bank reserves back down to the level demanded by commercial banks. The return to orthodox monetary policy is more difficult if the central bank has purchased structured credit assets, even if it has acquired only undervalued low risk, senior structured credits. If the market for these securities remains illiquid then sales may lead to large falls in their price. This makes the unwinding difficult and, if there is a substantial knock-on impact on bank lending, could stifle the recovery. A solution is to have in place long-term government-backed insurance of extreme losses on these credit assets, so making them marketable to private sector investors.

Using fiscal policy to support credit markets

There may be legal restrictions on central bank exposure to credit risk, preventing them purchasing safe but illiquid credit assets. This can be dealt with by government purchasing these assets or providing insurance guarantees so that the central bank is not exposed, even theoretically, to credit risk. The U.S. government has already moved in this direction in late 2008, announcing plans to use TARP funds to provide insurance that has allowed the Federal Reserve to purchase senior asset-backed securities, extended much further, to the senior AAA mortgage-backed and other structured credit assets that are currently substantially underpriced. A merit of such purchases, whether conducted by the central bank or by the government, is that they are likely to be profitable. They raise prices and restore liquidity but at the same time, once prices and liquidity have been recovered, the position can be sold out at a profit. This is not the same as what was originally proposed for the U.S. TARP fund, immediately after the failure of Lehman Brothers. Henry Paulson’s original concept seemed to have been to purchase bad quality sub-prime credit assets off banks, once they had suffered substantial impairment. This is a very different policy since it is unclear what is the appropriate price is for these very low quality securities and how far the impairment will go. It would be very easy to end up overpaying and losing money. The rationale for purchasing such low quality assets was presumably to restore the quality of bank assets and hence recapitalize the banks. But if this is the goal it would be much easier to simply purchase preference

<table>
<thead>
<tr>
<th>Quantity of the 600 smaller securities</th>
<th>Quantity of the 400 larger securities</th>
<th>Price requested per $ of face value</th>
<th>Total face value offered</th>
<th>Total price requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 face value each</td>
<td>2 face value each</td>
<td>50c</td>
<td>$3400</td>
<td>$700</td>
</tr>
<tr>
<td>2 face value each</td>
<td>4 face value each</td>
<td>60c</td>
<td>$2800</td>
<td>$5,680</td>
</tr>
<tr>
<td>3 face value each</td>
<td>6 face value each</td>
<td>70c</td>
<td>$4200</td>
<td>$2,940</td>
</tr>
<tr>
<td>4 face value each</td>
<td>8 face value each</td>
<td>80c</td>
<td>$5600</td>
<td>$4,480</td>
</tr>
<tr>
<td>5 face value each</td>
<td>10 face value each</td>
<td>90c</td>
<td>$7000</td>
<td>$6,300</td>
</tr>
</tbody>
</table>
shares for cash, exactly what the TARP fund was eventually used for. Alternatively if a bank fails, then a good way of resolving the bank’s situation, while minimizing losses and costs to the deposit insurance fund and taxpayers, is to transfer bad assets to a specialized ‘bad bank’ with the job of maximizing the recoveries from the assets. But this is a transfer of assets out of a failed bank not a purchase from a bank that continues in operation. The original Paulson plan seemed to have been an incoherent mixture of these two ideas. In practice it may be politically much easier for the central bank to conduct these purchases of high quality but illiquid credit assets than the government. If government is seen to pay higher than market price for assets, this could attract a great deal of criticism.

Other tools to support banks and banking markets
A number of other tools are being used or proposed for the support of banking markets. These can be discussed fairly quickly. None are satisfactory because they all interfere too much with bank decision-making and risk assessment.

- **Government may guarantee bank loans** – this is an inappropriate interference in private sector lending decisions and judgment of risks.
- **Government may guarantee bank liabilities** – this is helpful in ensuring banks have access to funding, but it is difficult to set the cost of these guarantees at an appropriate level. Too high and bank lending is penalized. Too low and this encourages further risk taking. Again government is taking on unnecessary risk.
- **Government can provide subordinated debt or other junior capital** – this is helpful in creating confidence in senior bank liabilities, but again difficult to judge an appropriate level of pricing.
- **Central banks may provide asset swaps to provide banks with access to liquidity** – a useful tool for ensuring banks have greater access to collateralized short-term borrowing, but does not deal with problems of long-term funding.

Government-backed reinsurance of extreme credit risk

A better approach, the principal proposal of this paper, is to support illiquid credit using government-backed insurance of selective safe credit assets, allowing these assets to be used in turn as collateral for borrowing and reopening both the money markets and the mortgage-backed securities markets on which banks rely for their short- and long-term funding. This policy recommendation has been developed in cooperation with Laurence Kotlikoff of Boston University and Perry Mehrling of Barnard College, Columbia University. The basic idea is very simple. Much of the trading in the new credit markets relied on insurance against loss, provided by firms such as the monolines or AIG writing credit default swaps (i.e., tradable insurance contracts) to protect holders of senior structured bonds. These insurance contracts have failed because in the face of a major economic downturn and the threat of very substantial credit losses they have acquired a large negative market value, pushing the monolines and AIG close or into failure. These private sector firms just did not have enough capital (there liabilities were too large compared to their assets) to be able to maintain this commitment to provide insurance in extreme adverse conditions. So the idea is, for a fee, to replace this failed credit insurance with government-backed reinsurance.

How might it work? The government offers a permanent government-backed guarantee on the value of selected safe banks assets, thus setting a floor under their prices and so ensuring that they remain marketable and can be used as collateral for short-term borrowing. For example, governments could guarantee that safe, senior AAA-rated tranches of mortgage backed securities – the tranches that are protected from the first 25 percent or so of losses on the underlying mortgage pool – pay investors no less than 90 percent of their promised cash flows. Once 10 percent of either interest or principal repayments have been lost then a government-backed insurance fund makes up any further shortfalls of principal or interest. This is a pretty safe commitment to make on a mortgage-backed security, since losses would have to rise to an extraordinary 33 percent of the entire pool in order for the government to have to make any payout. Like any insurance there would be a premium, around 40 basis points per annum might be about right. This does not sound like much but, because the underlying cash flows are secure, the insurance would make a profit. More importantly it would guarantee that the insured mortgage-backed securities could not fall below around 10 percent of their par value.

This policy might be described as ‘credit insurance of last resort,’ because such a government guarantee substitutes for the failed insurance promises on the values of senior mortgage-backed securities provided by insurers such as a AIG, the promises which entangled the insurance sector in the banking crisis. It is in effect an insurance against the systemic risk when the banking sector holds large portfolios of credit assets, financed out of short-term borrowing. By offering credit insurance of last resort, for a premium, the government removes the risk of credit assets being entangled in a systemic liquidity crisis. Since such systemic risk is created when assets are financed using short-term leveraged finance, the premium and the insurance can be waived when assets are held without leverage, such as by a pension fund or life insurance company. Government-backed reinsurance of extreme credit loss complements the policy of using quantitative easing to purchase credit related assets. After the central bank purchase, then the government can spend time examining these securities and determining the appropriate terms of the insurance (not all securities are

5 A detailed statement is Mehrling and Mine “The government’s responsibility as credit insurer of last resort and how it can be fulfilled” and can be found at http://www.cass.city.ac.uk/cbs/activities/bankingcrisis.html. A shorter statement is Kotlikoff-Mehrling-Mine http://blogs.ft.com/wolfforum/2008/10/recapitalising-the-banks-is-not-enough/#more-227 and see also other postings by Kotlikoff and Mehrling on the Economist’s Forum.
the same so the premium and terms of insurance could differ). Then once an appropriate price for long-term reinsurance is determined, and the reinsurance contracts written, the central bank is able to sell off the securities and end its exposure to credit markets.

Similar insurance can be provided for pools of on-balance sheet loans, although there is one major difference. The senior tranches of loan-backed securities are already protected, by their seniority, by overcollateralization, and by the interest margins earned on the structure. Portfolios of on-balance sheet loans do not have the same protection. Governments should only insure against systemic credit risk (the risks that will never materialize if economic policy is run properly), but this implies a much larger excess on loan portfolios than on structured credit.

Governments are increasingly providing insurance of extreme credit losses

Some form of this type of insurance has in effect been operating in the U.S. for some time, where banks can fund themselves by selling conforming mortgages to the government agencies, Fannie Mae and Freddie Mac. These purchases are possible because of the once implicit and now explicit government backing of Fannie Mae and Freddie Mac, but this arrangement has not proved to be a very effective use of government funds since the U.S. government is backing all sorts of other risks taken on by Fannie and Freddie, not just mortgage risk, and is also taking on risks of mortgage default that in other countries are carried by the private sector. Better to insure the systemic credit risk directly and leave Fannie and Freddie to operate as purely private sector institutions. Such insurance of extreme credit losses has been provided by the U.S. government for many years. It is now being used on a substantial scale, albeit in a somewhat uncoordinated way, as a direct response to the crisis. The rescue packages for Citigroup and AIG have both involved large scale insurance support. In the case of Citigroup this has taken place on an astonishing scale, with insurance of some $306bn of loans and structured credits.

The Troubled Asset Recovery Program (TARP) would provide insurance support of this kind, allowing the Federal Reserve to purchase large amounts of asset-backed securities (the securitizations of credit cards, student loans, vehicle loans, and other retail bank exposures that are not secured on property). The TARP legislation made this possible because of the inclusion of Section 102, which mandated the use of the funds to support insurance of troubled assets. Similar proposals are also being introduced in the U.K., this time for insurance support of senior tranches of mortgage-backed securities, by Sir James Crosby in his November 2008 report on the revival of the U.K. mortgage market, and, on a much larger scale for an asset protection scheme that will provide insurance for on-balance sheet loans and structured credits (details of which will be announced in March of 2009).

Conclusions – the future of banking

The crisis we are now living through is not a crisis of fundamentals. Bank assets are of much better quality than is generally realized and confidence can be restored. The policy recommendation of this paper, government-backed insurance guarantees against extreme loss, are becoming an increasingly important part of the policy response in the U.S., the U.K., and in other countries.

This crisis also raises profound questions about the future of banks and financial markets and the relationship between government and financial institutions. For the forty years preceding to the current crisis the dominant trends in financial services have been deregulation and financial innovation. These have so changed the banking industry and financial markets that they are almost unrecognizable from forty years ago. In the 1960s banks played an important role in the economy, handling payments and offering loans mainly to larger companies. But they were more like public utilities than private businesses. Stock markets were relatively staid places for trading the shares of larger cash rich companies, but they played little role in raising new capital for investment. Banks in many countries, for example almost the whole of continental Europe, used to be owned by central or local governments. Even when banks were in private ownership, there were very rigid regulations that limited what they could and could not do. Their loan and deposit rates were regulated. There were also tight controls on the types of business they could conduct. In most countries only specialized mortgage banks could offer loans secured on housing. There was very little other lending to households. Credit cards did not exist at all. There was very little competition. Banks might offer personal customers relatively expensive loans for purchasing cars or consumer goods, either directly or through specialized loan companies. Banks did lend money to safe businesses, because in those days very few companies were able to borrow money by issuing bonds on securities markets. In relatively rapidly growing economies like Japan and Germany bank loans to businesses provided an important share of funding for business investment. But otherwise banks took few risks. They were conservative and cautious.

All this has changed. Banks nowadays – both commercial banks and investment banks – are risk-takers. They lend money to households and companies knowing that they may not always get this money back. They trade in the financial markets, looking to buy and sell and make a profit on the turn. They also compete aggressively with each other in all these new areas of business. The outcome has been a great increase in the size the banking industry. Most of the time risk taking has earned banks good rewards so, despite the much greater competition in banking, profits have also risen.

Banks have also become innovators. Commercial banks have developed new tools and techniques for discriminating between good and bad borrowers, allowing them to offer loans to individuals who
previously would have been unable to borrow for say a car or a house purchase. Investment banks have developed new trading instruments and even more sophisticated trading strategies. This is not just gambling, in which one bank gain is another bank’s loss. These developments in the financial markets have offered companies of all kinds new access to business financing and opportunities to more effectively manage risks such as raw material prices or exchange rates. Increasingly savings and investment are being intermediated via markets with banks acting indirectly as advisers and as brokers, bringing investors and companies together, instead of borrowing and lending themselves.

The parallel deregulation of financial markets has also resulted in substantial economic benefits. Yes, some market participants earn outrageously large salaries, apparently for being good at taking money of other investors. Financial markets do sometimes put excessive pressure on companies to achieve short-term results. But the deregulation and resulting competition and innovation in financial markets has provided thousands of firms with access to funding that they previously could not have obtained. Deregulated financial markets have also helped channel funds into new companies, or support the restructuring of old companies, and so helping innovation and productivity improvements throughout industry. The current crisis has exposed the downside to all this risk taking and innovation. Deregulated, innovative, risk-taking banks will sometimes suffer losses. Some banks will be badly run. When the industry is losing money, these banks lose much more than their competitors. Moreover, banks tend to do similar things and exposed to similar risks, i.e., in sub-prime mortgages. So when risk materializes it can hit all the banks in a risk-taking industry hard at the same time.

The magnitude of the current banking crisis suggests that deregulated, risk-taking, innovative banking has reached its apogee (the apogee is the point in the orbit of a planet where it is most distant from the sun). In future there will be more regulation, and less risk-taking and less innovation. But it will be a major mistake to try and reverse all the developments of the past forty years, and attempt to return to the “public utility” banking of the 1960s where banks shun risk. This would require a major contraction of lending. Not only would this bring about a severe macroeconomic downturn, it would also cut off many deserving customers from credit, those with less certain incomes or unpromising future prospects. There is also plenty of scope still for banking innovation. Hopefully, in future, the focus of banking innovation will not be in loan products or investments, since too much and too rapid innovation in financial products seems to have created more trouble than it has been worth. But there is still plenty of opportunity for innovation in other banking services.

What then is the appropriate relationship between government on the one hand and the banking industry on the other? The proposal of this paper, that governments should act as reinsurers of extreme catastrophic credit losses, is part of the answer. A virtue of having permanent government reinsurance of this kind is that governments can otherwise stand back and let banks continue to take more modest lending risks, for example to lower income customers or to smaller less well established companies. This paper has argued that such insurance against extreme outcome is a key to ending the current crisis. Removing the fear of extreme loss is necessary for banks to begin lending again. Such insurance is also needed to restore the pricing of traded credit assets to something that closely approximates fundamental value, so that bank accounting statements and ‘mark-to-market’ valuations are more meaningful than they are today. It is not widely realized but the quality of bank assets is actually far better than accounting statements would have us believe. Government-backed insurance is the right way to tackle this problem. Government-backed insurance will also have a permanent role to play. Whatever the future of banking, we want arrangements where banks still take risks, and where their shareholders continue to be responsible for most of these risks, since banks are much better than governments at making commercial decisions about risk and return in a reasonably stable economic environment.

What governments, unavoidably, must do is accept responsibility for extreme risks. This could be left as an implicit promise of support. But better that it be an explicit part of bank regulation and oversight. For example, banks could be charged a premium for exposure to long-term illiquid assets, financed out of short-term wholesale borrowing, in exchange for an explicit insurance against extreme outcomes. They would then be paying for the insurance commitment that governments have to provide, because it is necessary to support the banking system. At the same time this payment would create an incentive not to engage in excessive maturity mismatch, and fund more appropriately long-term investments, through bond issuance or permanent sale of loan-backed securities. Government-backed systemic risk insurance has a role to play both in escaping the current crisis and ensuring it never recurs.

Public sector support of the banking industry
Evaluating the integrity of consumer payment systems

Valerie Dias
Chief Risk and Compliance Officer, Visa Europe

Abstract

Given the unprecedented events of 2008, risk management has gained a heightened and highly prominent role on the banking agenda. Pretty much every area of retail and investment banking activity (together with all of the associated risk management practice) has fallen into the spotlight. Yet, amongst all the turmoil, there is one area of banking activity that has gone largely unnoticed and unscathed – namely payment services and systems. According to analysis from Datamonitor, bank-operated payment systems (namely cheques, direct debits, credit transfers and payment cards) now account for some 66 percent of European consumer spending. By definition, these payment systems are absolutely fundamental to everyday economic activity – so much so that any loss of confidence, never mind a loss of service, could have truly catastrophic effects. So, with all that has happened in recent months, should we not be taking a long hard look at the integrity of payment systems? After all, this integrity generally rests on decisions taken a decade or more ago. And bank-operated payment systems are now subject to not just enterprise and settlement risks, but also to sustained, systematic, and highly sophisticated criminal attacks. By taking stock, the industry can assess its collective risks. Individual banks can also evaluate the extent of their own exposure. And, hopefully, we can reach some consensus on how best to safeguard one of the most critical functions entrusted to the banking industry. In this paper I will focus on the fastest growing area of the bank-operated payments market, namely payment cards, and I will devote particular attention to the risks of compromise by criminals – good old fashioned fraud, perpetrated by very up-to-date criminals.
Keeping things in proportion
Before embarking on the detail of the discussion, I should offer an important caveat. It is true that all financial systems are subject to significant risks, and payment systems are no exception. It is also true that the criminals that now prey on us are far more audacious and sophisticated than ever before. Yet, in truth, the payment card sector has traditionally managed its risks exceptionally well. Here in Europe, the biggest vulnerabilities of the past have been effectively eliminated. As a proportion of Visa card usage, the level of fraud losses is close to historic lows. And, despite the turmoil of recent months, settlement risk in the Visa system has not surfaced as a serious consideration for banks, retailers, or consumers.

The purpose of this paper is not, therefore, to warn of any immediate dangers or impending catastrophe. It is simply to clarify the role of payment systems, such as Visa Europe, the obligations we should be held to, and the value we can deliver; to encourage the collective industry to take full account of the changing circumstances and to plan accordingly; and to urge individual banks to evaluate their own industry to take full account of the changing circumstances and to be held to, and the value we can deliver; to encourage the collective payment systems, such as Visa Europe, the obligations we should assertate dangers or impending catastrophe. It is simply to clarify the role of the changing circumstances and to plan accordingly; and to urge individual banks to evaluate their own circumstances and take full account of true risks and costs of fraud – something which, I suspect, most banks radically underestimate. With that said, let us consider the specifics of the situation.

All change for European card payments (and card fraud)
The payment card scene here in Europe has evolved considerably in recent years and certain features are important to highlight.

The scale is far bigger – consider that, in the past five years, total card sales volume for Visa Europe alone has increased by almost 55 percent. In the same period, the number of Visa cards in circulation has grown by around 40 percent – and traditional debit, credit, and commercial cards have been supplemented by new propositions, most notably prepaid cards.

The scope is far broader – the number of acceptance locations, and the type of retailers that accept cards have escalated and face-to-face transactions have been progressively supplemented by e-commerce, self-service, and mobile payments. Additionally, the use of cards by consumers has been complemented by increasing card use among businesses and governments.

The underlying technology is far more capable – 4,500 European banks are in the latter stages of migrating their entire payment card businesses to EMV chip and PIN, and have now upgraded the majority of cards and acceptance devices. The nature of fraud attacks and losses have evolved accordingly.

The nature of fraud attacks and losses have evolved accordingly.

From the small time to the sophisticated – card fraud used to be an opportunistic crime. It was perpetrated by small time crooks who preyed on unwitting individuals. It is now the realm of highly skilled, well-resourced multinational syndicates who actively target unwitting corporations. Today, they have the skills to identify vulnerabilities and exploit them on a truly industrial scale. In fact, they behave in the way that many businesses would like to: they are innovative, extremely agile and quick to enlist specialist skills. When they spot an opportunity, they quickly scale up to maximize their success. Of course, the current financial climate exacerbates the situation – encouraging criminals to work even harder to identify and target any points of vulnerability.

From the card to the infrastructure – in the early days, when their methods were rudimentary, criminals focused on the physical card, so lost and stolen card fraud predominated. As the industry matured, so too did the criminals. Their focus shifted to the data stored and encoded on the card, hence the rise in skimming and counterfeit fraud. Today the focus is shifting again. Why bother with the card at all? Instead, criminals are concentrating on all those times and places where the necessary data is stored, processed, or transmitted. In other words, they aim to intercept data from within the payments infrastructure. The issue is exacerbated by the sheer variety of participants involved in today’s payment card ecosystem – including processors, network providers, terminal vendors, the companies that install or maintain terminals, web hosting companies, the providers of website to settlement risk. For example, we have introduced additional and more frequent risk reviews of our members. We have also introduced new liquidity stress tests and have taken appropriate actions to mitigate against the changing risk environment. In certain instances this has included the taking of additional financial safeguards.
checkout pages, plus all of the companies that have written the different software applications across every single link in the chain. They may not realize it, but each of these participants can represent a potential risk — consequently, their products, services, and their people can be subject to criminal scrutiny.

From the local to the global — for very many years, the vast majority of card fraud was perpetrated locally. Domestic losses from lost, stolen, and counterfeit cards was the big issue and, in the early days, the initial driver for the migration to chip and PIN technology. Today, national borders are largely immaterial. Criminals located in one country may compromise card details in a second country, before going on to commit fraud on another continent altogether. And, from a European perspective, a growing issue is all the overseas locations and environments which are not protected by EMV chip and PIN technology.

Evaluating the integrity of consumer payment systems

Analyzing the pattern of current fraud losses

These changing circumstances are clearly reflected in the source of fraud losses from European Visa cards and transactions (as reported to Visa Europe on a monthly basis by all of its member banks). From a European perspective, the most important factor is, of course, the progressive implementation of the EMV chip and PIN infrastructure. This has been extremely successful in addressing the big vulnerabilities of the past (namely the threat from domestic counterfeit fraud and also from lost and stolen cards). These forms of fraud were traditionally responsible for the vast majority of fraud losses. And, prior to the EMV migration program, the related losses were escalating at more than ten percent each year.

Counterfeit and lost and stolen fraud losses are now seeing a steady and significant decline in all environments where EMV chip has been deployed. To compensate, the criminal fraternity has shifted its attention to those environments which have not yet been secured by EMV chip, namely card-not-present (CNP) transactions (such as e-commerce transactions), which now account for the largest source of gross fraud losses, and also cross-border fraud (involving merchant locations and ATMs that are yet to deploy EMV chip technology).

Although fraud-to-sales ratios are close to historic lows (Figures 2 and 3), the actual losses tend to be highly concentrated, with the more susceptible businesses bearing a disproportionate level of fraud losses. For example, CNP fraud losses now account for 46 percent of the total fraud losses. There has also been an increase in cross-border ATM fraud losses (whereby counterfeit cards are used in countries which have yet to upgrade their ATM estates to EMV chip), which has increased from 2 to 21 percent of total cross-border fraud losses.

The root cause behind many of these losses is, of course, the issue of data compromise. To perpetrate CNP fraud, criminals generally need to be in possession of compromised card details. And, to perpetrate ATM fraud, they also need to be in possession of compromised PINs. The matter of exactly where and how criminals are obtaining this data is the burning question for all players in the industry. With the sheer number of participants in today’s payments ecosystem, and the tangled web of interdependencies between them, it can be a real challenge to identify and address the potential points of compromise, and also to ensure that the industry’s security standards and requirements are universally applied.

The matter is all the more pressing when one considers the scale of attacks that can result from a single compromise. A recent and well
known example remains the hacking case involving TJX Enterprises (the owner of several U.S.-based retail brands including TK Maxx) during 2006, in which more than 45 million card accounts were reportedly compromised. At the other end of the scale, The Times newspaper in the U.K. recently reported that customer data is routinely stolen from small online retailers and freely traded in Internet chat rooms. Monitoring online discussions in one particular chat room, the newspaper reported that hundreds of customer details were sold during a single night.

It is also important to recognize that fraud losses are a ‘lagging indicator.’ They relate to crimes that have already been committed and costs that have already been incurred. Analysis of these losses can help banks to identify some emerging trends, but not to make an accurate prediction of the future. In today’s environment, with quicker product development cycles and an enthusiasm for innovation, the risk of security gaps increases. While a fraudster can quickly identify and exploit a new vulnerability, it is much slower to address.

A graphic illustration is the introduction of prepaid cards. The pre-funded nature of these products might be expected to minimize the risk and fraud exposure. In reality, prepaid cards can be subject to new variants of fraud (particularly first party fraud losses, such as the fraudulent loading of cards and the running up of negative balances).

Counting the total costs of fraud

Through Visa Europe’s fraud analysis programs, we routinely monitor details of net fraud losses. From discussions with individual banks, I know that many card issuers tend to measure their own fraud losses in the same way. But how many assess the related costs of fraud? In my own experience, costs associated with fraud related processes, such as personnel costs or charge-back processing, are typically disregarded. And the opportunity costs, such as the impact of fraud on subsequent customer behavior, are almost always ignored. At Visa Europe we have been developing an analytic framework – a business model – to assess the ‘total cost of fraud’ for individual issuers. In doing so, we identified six major cost components (Figure 4). And, in an initial pilot stage, we worked with five different issuers to contrast and compare their respective processes and performance.

The results need to be robustly validated in order to reach definitive conclusions (in terms of average or benchmark measures). Nonetheless, the exercise has already confirmed three highly significant factors.

Firstly, in each of the five examples investigated, the issuer’s net fraud losses represent only a proportion (and often a small proportion) of the ‘total cost of fraud’ – ranging from less than 20 percent to no more than 60 percent.

Secondly, an issuer’s ‘total cost of fraud’ is partly driven by the scale and nature of its card portfolio. However, the actual performance, and the pattern of costs, is dependent on an almost infinite combination of variables. For example, the issuer’s business strategy and business model, its customer service ethos, the nature of its cardholder base, and even its geography have a direct impact on the nature and magnitude of fraud costs. Then, of course, there are the characteristics of the fraud department itself, including its level of expertise, its resources, the tools and techniques it deploys, and its relationship with other parts of the business. Again there is a direct impact on the level of fraud and its related costs.

Figure 5 reflects the sheer level of diversity across the five banks we investigated.
Thirdly, the opportunity costs relating to fraud should not be underestimated. In particular, the change in cardholder behavior subsequent to a fraud attack can be considerable. In the case of compromised cards, this change in behavior tends to be even more significant. For one bank, cardholder spending fell by 60 percent. Across all five, the average reduction was more than 35 percent.

Given that so many issuers judge their fraud performance on their net losses alone, I suspect that they are significantly underestimating the true costs of fraud and its impact on their wider business performance.

Reputation, reputation, reputation
An added dimension is, of course, the reputational impact of fraud. The fact is that payment card fraud is a constant source of fascination — for the media, for consumers, and also for regulatory community. We track the attitude of stakeholders through regular research programs. In the most recent survey, conducted at the end of 2007, regulators in all of the big E.U. economies were asked about their concerns with the payment card industry. Security was by far their biggest worry.

In every country, members of the regulatory community were more concerned about security than debt issues, customer issues, or transparency of costs. In Italy, for example, almost two thirds of respondents were concerned about security. In Spain and the U.K. around a half expressed similar concerns. Of course, these attitudes are likely to have shifted in the wake of the credit crisis. Arguably, consumer and regulatory trust in the banking system has reached an all-time low. It is important for our entire industry to rebuild trust, and concern about payment card fraud is one area which deserves definite consideration.

As an industry, therefore, we need to demonstrate to the regulators that, yes, we do take fraud seriously, we are continually introducing new initiatives, and we are eager to work collaboratively to address the threats. This way we can keep in touch with their expectations and ambitions, and influence their thinking so that any new proposals or legislation have the best possible impact on our industry.

What conclusions should we draw?
To summarize, the nature of fraud has evolved quite considerably in recent years. Criminals are playing for much higher stakes. They have a clear understanding of the systemic vulnerabilities and how to exploit them. And they work globally, taking full advantage of national borders and differences.

Whilst the European implementation of EMV chip and PIN has effectively eliminated many of the vulnerabilities of the past, it has put additional pressure on those transactions and acceptance environments which rely on legacy technologies. At the same time, many banks underestimate the true costs of fraud. They fail to account for the related operational and process costs. And they are often oblivious to the substantial opportunity costs.

As fraud attacks become more audacious and more personally invasive, the level of scrutiny has grown, from the perspective of the public, the media, and also the regulators. But what are the implications and conclusions for banks? And what role should payment systems, such as Visa Europe, be playing in this new environment? I devote the remainder of this paper to addressing these two questions.

Implications for banks
The changing circumstances essentially mean that all the big trends in European card fraud are ‘migratory’, with the industry itself, the merchant and vendor communities, and the criminal fraternity all seeking to adapt to the new realities. It is, therefore, incumbent on banks to take a long hard look at their fraud management practices, the underlying principles which govern them, and the interdependencies with the wider business.

Making full use of the available tools
There are no silver bullets in the fight against fraud, but there is plenty of silver buckshot. Standards have been set. Tools do exist. When they are deployed they do work — and they work very well. At Visa Europe, for example, we constantly monitor the fraud management performance of every member. We routinely identify those banks that generate a disproportionate level of fraud losses. And we work with them to identify issues and improve performance. Through this work we can see that there are never any insoluble problems or insurmountable issues. Instead, the fraud performance of an individual payment card business depends on the attitude of its management and the support it provides to its people.

It would perhaps be naïve to believe that fraud can ever be completely eliminated. But, by understanding and applying best practice, the losses can be effectively managed. Major strategic initiatives, such as the migration to chip and PIN and the implementation of Verified by Visa, can be highly effective. But, in a global system (encompassing more than 20,000 banks, 20 million retailers, over 1 billion consumers, and who knows how many intermediaries), there will always be pockets of acceptance which rely on less secure legacy technologies. As banks implement new solutions, these pockets come under increased pressure and the focus of fraud management teams must shift accordingly.

Building on the expertise of risk and fraud managers
Thanks largely to chip and PIN, the biggest issues of the past (and, by definition, the focus of traditional fraud management practices) have been addressed. Consequently, as fraud migrates to different products, channels, and geographies, European banks need to fundamentally rethink and refocus their
Evaluating the integrity of consumer payment systems

fraud management operations. This requires new skills, new disciplines, and a far more holistic view of the payments business and its inherent risks.

Fraud management teams counter multinational criminal syndicates and draw on a far broader range of skills, not only in risk management, but also in areas such as technology, compliance, and statistical analysis. They also need to think well beyond the specifics of credit or debit card usage and consider the way that criminals seek to target core customer accounts on a mass scale.

Establishing and institutionalizing a forward looking approach

The industry needs to reduce its reliance on lagging indicators, such as actual losses incurred on their own existing products. Instead, we need to focus on new and emerging trends and the way criminal behavior is likely to evolve in the months and years ahead. This is particularly the case when contemplating the introduction of new products and propositions. In today’s world, with quicker product development cycles and an enthusiasm for innovation, the risk of security gaps increases. It does not take long for a fraudster to identify and exploit a new vulnerability, but it takes a long time to address it.

When new payment products are developed, it is therefore vital for risk and compliance divisions to work alongside marketing divisions in a way that guarantees appropriate security and integrity from the outset. There is also a need to consider the fraud management initiatives of other players in the marketplace (because, as others address their own vulnerabilities, criminal activity will inevitably be concentrated on those with a lower risk threshold). As one example, consider the implementation of Verified by Visa in the U.K. One major issuer was slow to implement Verified by Visa on its own debit card portfolio and recently experienced a sudden surge in CNP fraud attacks. Another chose to adopt a weak cardholder registration method and suffered as a result.

Similarly, those banks that have implemented robust systems for detecting and blocking fraudulent ATM transactions have benefited at the direct expense of those that have not. The fact is today’s criminals do appear to have detailed insider information. They often know, at a bank-by-bank level, where the changing vulnerabilities lie, and they act on this knowledge quickly and decisively.

Reassessing organizational and governance issues

Typically, fraud management has been handled by product type (with credit card, current account, and online banking divisions addressing their own respective vulnerabilities, and compliance officers managing areas such as regulatory risk), and also by geography. With fraud migrating quickly across products, channels, and geographies, it is necessary for banks to realign and prepare their teams accordingly. By centralizing, or at least coordinating, their teams, banks can share best practices and exchange information across all product lines and geographies. They can also ensure that there are no ‘open doors’ or ‘weak links’ for criminals to exploit.

By the same token, it becomes appropriate to extend and integrate common fraud controls across all areas of the organization, so that, ultimately, the full banking relationship can be secured from one platform. This approach requires the integration of systems, as well as coordinated marketing and management across products, departments, and channels. It also makes sense to make full use of investments in the payment card system (namely chip and PIN). Through dynamic passcode authentication, for example, the inherent security of a chip card can be used to generate one-time-only passcodes in place of static passwords. This can bring an additional level of security to all types of CNP card transactions, together with online and telephone banking services.

Considering the wider business implications of fraud

As fraud attacks become more spectacular, scrutiny from the media, the public, and the regulators increases. As fraud patterns change, attacks can also become more personally invasive for customers (for example, the experience of identity theft or debit card fraud can be far more concerning and disruptive to a consumer than credit card fraud).

As indicated by our ‘total cost of fraud’ study (see above), this can have a definite impact on customer perception and, increasingly, on customer behavior. The inherent security of a payment product, therefore, has wide reaching business implications. Additionally, the way that a bank responds to fraud (in its dealings with its customers) has a significant impact on subsequent customer attitude and behavior. With this in mind, senior and executive managers from outside of the risk and fraud management functions would be well advised to take more direct interest in fraud, its ongoing management, its impact on the experience and perception of customers, and also on the attitude of regulators. By driving greater alignment between the fraud management teams and other business areas, there is an opportunity to better understand each others’ priorities and to work together to pursue common business goals.

In other words, fraud management should never be seen as a discrete area. Instead, it should be aligned with the bank’s wider business strategy and business model. The overall attitude to risk needs to be reconciled with other (often conflicting) considerations, such as the customer service ethos and the quality of the customer experience.

Recognizing the distinction between fraud management and other forms of risk management

Fraud management is often considered as a sub-set of the wider risk management function. In many respects this is the case. But there are some vital distinctions between payment card fraud and other forms of risk.
With credit risk, for example, a bank is concerned with mitigating the risks of customer write-offs. The risks in question arise from the direct relationship between the bank and a given customer. With first party fraud, it is a similar situation. But, with all other forms of payment risk, there are many more ‘externalities’ to consider. Other third parties, such as the customer whose account is compromised or the merchant who is defrauded, are also involved. Additionally, with organized criminal networks, the spoils of card fraud will often be linked with or used to fund other forms of criminal activity, such as drug trafficking, people trafficking, or even international terrorism. With credit risk, therefore, a bank need only be concerned with risks and losses that arise in the nature of lending money. Credit risk can legitimately be considered as ‘a cost of doing business.’

Fraud losses are entirely different. They come about through attacks on the payment system. Entirely innocent parties are often caught in the crossfire, and, as a matter of policy, they must always be resisted and pursued.

Implications for payment systems

As custodians of payment system integrity, addressing fraud risks is a big part of the fiduciary duty of any payment system. With a holistic overview of the marketplace and its changing circumstances, payment systems such as Visa Europe can identify emerging threats and develop new strategies and solutions accordingly. And, with a wealth of expertise and insight, we can help individual banks address specific concerns.

As an indication of our commitment, consider that Visa Europe was a driving force behind the introduction of EMV chip and PIN (we were the first payment system to establish a migration plan and the only one to allocate a migration fund). We also developed 3D Secure, the technology now used by all international card systems to authenticate e-commerce transactions (including Verified by Visa). We are playing an active and highly visible role in the implementation of the PCI DSS standards (providing hands on support to acquirers, hosting a program of awareness and training, and working in partnership with major retailers to agree migration plans).

Indeed, we would argue that no payment system has done more to address specific concerns.

Acting as guardians of payment system integrity

One of the central functions of any payment system is to safeguard integrity. Fraud management is, therefore, a critical consideration, and, at Visa Europe, the fraud experience of the collective membership is one of the scorecard measures on which our corporate performance is evaluated by our board of directors. For example:

- Any payment system has an obligation to develop operating regulations, business rules and requirements in order to protect its participants from existing and emerging fraud trends.

Libera

- Through the routine collection and analysis of management information, payment systems must assess the fraud performance of the system as a whole, of individual banks and of major merchants.

- Through compliance programmes, payment systems must ensure that all participants, including approved suppliers such as product and technology vendors, abide by agreed security standards.

- In instances where fraud has occurred or transactions are disputed, payment systems must act as the trusted intermediary, handling dispute processes and, where necessary, acting as arbiters.

- Payment systems must ensure that all existing and future payment products are adequately protected against possible risks.

Actually delivering on these duties can be a challenge and a delicate balance to strike. Individual participants, such as banks, retailers, and third parties, do not like to have new rules imposed upon them. Yet they want to be protected from the failings of every other participant in the global system. Also, with the sheer number of participants, the implementation of any new rules or systems can take several years to complete (consider, for example, that Europe’s chip and PIN migration programme commenced more than a decade ago).

The reality of this situation means that fraud management programmes will always consist of large, longer term strategic initiatives (to provide definitive solutions), supplemented by a raft of tactical tools (to provide stop-gap remedies). Figure 6 indicates the range of measures in place to address data compromise.

Liberating and leveraging innate skills and expertise

A payment system tends to have a holistic perspective on the nature of the fraud environment. Through fraud reporting systems and processes, for example, Visa Europe benefits from a near real-time view of the European fraud environment. We anticipate and analyze new and emerging fraud trends. We understand how different members in different countries address and manage fraud losses. Our multidisciplined team includes a range of specialists, including technology, compliance, analytical, and investigative skills that provide a consultancy service to the system participants.

Encouraging and enabling individual banks to invest for the future

Given the level of interest (and concern) among cardholders, we can foresee a time when card issuers use their respective fraud management credentials as a source of competitive differentiation. Some issuers of V PAY (our chip and PIN-only debit solution) actively promote its enhanced security (as compared to other debit cards). Also, we are working with several European banks

4 PCI DSS refers to the Payment Card Industry Data Security Standards – a set of security requirements (agreed across the global payment card industry) to be implemented by any organization involved in transmitting, processing, or storing account and transaction data.
to pilot our new Visa card with one-time code (which generates dynamic passcodes via its own inbuilt keypad and screen).

We actively encourage members to factor the question of security into the development and promotion of their products and propositions. At the same time we urge them to make full use of existing investments and frameworks (such as EMV and Verified by Visa). In this way, individual banks and groups of banks can move ahead with new security initiatives without jeopardizing the acceptance and interoperability of their card programs. Also, to encourage progress we have always sought to incentivize innovations through our economic models. In the past this has included liability shifts for new technologies (such as EMV chip and PIN and also Verified by Visa), and, in certain circumstances, reduced interchange rates. This approach has meant that banks are rewarded for their progress and insulated from those losses which their investments were designed to prevent.

Building productive stakeholder relationships

Through a formal stakeholder relations program, it is important for payment system to work with regulators, law enforcement agencies and other such bodies. The regulatory environment and its associated legislation can have a definite impact on payment card fraud. Also, the attitude of law enforcement agencies and judicial authorities, combined with their level of expertise, will determine how seriously they take card fraud, and the efficacy of their action.

Bringing all of these parties together, and agreeing on collective priorities and responsibilities, is a critical success factor in tackling the complex issue of payment fraud. Through our engagement programs we, therefore, seek to create an environment in which payment card fraud is regarded as a serious crime, police investigations are effective, and penalties are dissuasive and proportionate.

Conclusion

Within this paper I have sought to demonstrate the realities of today’s payment fraud environment. It is not a calamitous situation. The industry has managed the risks well. But close attention must be paid to the current trends and their likely trajectory. The European migration to chip and PIN technology has brought a definite step change to the security of the region’s card payments. This is a significant collaborative achievement that has been welcomed by all stakeholders.

Much greater pressure has been placed on those transactions and environments that are yet to be protected by chip and PIN. And, as those gaps are closed, it is perhaps inevitable that other vulnerabilities will be identified and exploited.

Whilst continuing to extend the protection provided by chip and PIN, it is therefore incumbent on the industry to address other issues, primarily the reality of data compromise. It is also necessary for individual organizations to make a full appraisal of their own fraud performance and its wider business consequences.

Payment systems such as Visa Europe can help across both dimensions: developing and mandating collective industry solutions, whilst also assisting individual banks in improving their own performance. I, therefore, urge banks to hold their payment system partners to account. Ultimately, the extent of our success in applying new solutions and setting stringent standards is determined by our ability to drive consensus and cooperation at the right levels across the industry. By placing and keeping payment risk on the executive management agenda, we can build on our past successes.
Detecting and minimizing fraud risks
In consultation with the wider European payments industry, Visa Europe has introduced a number of new standards and solutions to help banks detect and address the related risks, and new systems are in development:

- **iCVV** — as of January 2008, the use of iCVV is a standard requirement for all newly issued Visa chip cards. This enables issuers to check (through a standard authorisation message) if account information derived from a chip card has been encoded on a counterfeit magnetic stripe. It is, therefore, a valuable new way to address cross border counterfeit fraud.

- **Visa Account Bulletin** — introduced in 2006, the Visa Account Bulletin is an automated system for distributing potentially compromised or ‘at risk’ account numbers to the banks that issued them. Whenever a data compromise incident has been identified, it enables issuers to monitor any accounts which may have been involved.

- **New ‘real time’ fraud detection systems** — we are supplementing our existing fraud detection systems with real time systems, capable of supplying an accurate risk score within the authorisation message. This will help to detect out of pattern spending and decline transactions accordingly.

- **New profiling systems** — Visa Europe is working with members to explore new profiling and detection systems, such as ATM profiling (systems to detect out of pattern ATM transactions, or transactions at ATMs which are not typically used by international travelers) and common purchase point (CPP) analysis (systems to detect and address CPPs more effectively).

From static to dynamic data
The ultimate solution to data compromise attacks is to render the data useless to criminals. One step in this journey is to migrate from static data, which remains the same for every transaction, to dynamic data, which changes for every transaction. It may not address all acceptance channels and environments but, where it is supported, this can bring significant security benefits.

- **SDA to DDA** — in a standard chip transaction, account data is routinely subject to rigorous authentication checks. To provide additional security to offline-approved transactions, Visa Europe is supporting the migration from ‘static data authentication’ to ‘dynamic data authentication,’ thereby providing an additional level of security. Visa Europe has mandated that as of 1 January 2011 all newly issued and replacement cards must support DDA and by 1 January 2015 all cards in the field must be DDA.

- **Verified by Visa to dynamic passcode authentication** — the use of Verified by Visa (our cardholder authentication service for e-commerce transactions) has increased considerably in recent months. In the future Verified by Visa is set to be enhanced by ‘dynamic passcode authentication,’ whereby a chip card is used to generate highly secure one-time-only passcodes.

Securing the industry infrastructure
One of the biggest challenges facing the global industry is to ensure that every single participant in the payments ecosystem has the appropriate measures in place to secure sensitive account data. To this end, Visa Europe operates a range of compliance programs, and works constructively with members to help them meet the related requirements.

- **PCI DSS and PA DSS compliance** — Visa Europe was closely involved in the development of PCI DSS and PA DSS, and has direct representation in the Payment Card Industry Security Standards Council. To assist in their deployment we run a range of awareness and education programs, and offer proactive support and guidance to our members.

- **PIN and PED audit programs** — ensuring that all entities processing PIN-verified transactions meet Visa Europe’s security and policy requirements in order to protect transaction authentication data from being compromised.

- **Third party compliance and registration programs** — providing assurance that third parties offering card and payment services are correctly certified and that an acceptable level of due diligence takes place to control risks.

Figure 6 - Addressing data compromise. Source: Visa Europe
A loss distribution for operational risk derived from pooled bank losses

ManMohan S. Sodhi
Professor in Operations Management,
Subject Leader Operations Management & Quantitative Methods, Cass Business School,
and Co-Director, Cass-Capco Institute
Paper Series on Risk

Wayne Holland
Senior Lecturer in Operations Research,
Cass Business School

Abstract
The Basel II accord encourages banks to develop their own advanced measurement approaches (AMA). However, the paucity of loss data implies that an individual bank cannot obtain a probability distribution with any reliability. We propose a model, targeting the regulator initially, by obtaining a probability distribution for loss magnitude using pooled annual risk losses from the banks under the regulator’s oversight. We start with summarized loss data from 63 European banks and adjust the probability distribution obtained for losses that go unreported by falling below the threshold level. Using our model, the regulator has a tool for understanding the extent of annual operational losses across all the banks under its supervision. The regulator can use the model on an ongoing basis to make comparisons in year-on-year changes to the operational risk profile of the regulated banking sector.
The Basel II accord lays out three possibilities for calculating the minimum capital reserve required to cover operational risk losses: the basic approach, the standardized approach, and the advanced measurement approach (AMA). The latter is specific to an individual bank that uses its own approach to determine capital requirements for its different lines of business and for the bank as a whole. A typical AMA model uses a probability distribution for loss per incident of a certain category and another for the number of incidents in that category, although there are other modeling approaches as well. A problem with this approach then is the paucity of loss data available for any particular bank to obtain such distributions.

We obtain a probability distribution for operational risk loss impact using summarized results of pooled operational risk losses from multiple banks. Doing so allows us to derive simple AMA models for the regulators using data from the banks they oversee. One possibility is that the regulator can obtain an estimate for the capital requirement for a ‘typical’ bank under its supervision. We use data from 63 banks that the distribution fits annual losses very well. Moreover, we adjust for the fact that the regulator sees only losses above a certain threshold, say €10,000.

Background and literature review

Holmes (2003) outlines four reasons why operational risk quantification is more difficult than market or credit risk: (1) there is a lack of position equivalence (i.e., exposure amount), (2) it is difficult to construct a complete portfolio of operational risk exposures, (3) loss data is affected by the continual change of organizations and the evolution of the environment in which they operate, and (4) the difficulty in validating operational risk models. These difficulties mean that widely differing approaches have been taken in attempting to tackle operational risk quantification.

Smithson and Song (2004) classify approaches to quantification of operational risk in three ways. First are the process approaches that focus on the chain of activities that comprise an operation. These include causal models, statistical quality control and reliability analysis, connectivity matrix models, Bayesian belief networks (an interesting example of which can be found in Cowell et al. (2007)), fuzzy logic, and systems dynamics. Second are the factor approaches that include risk indicators, CAPM-like models and discriminant analysis. Thirdly, actuarial approaches including extreme value theory and empirical loss distribution modeling. The actuarial approach is by far the most favored approach in producing AMAs for operational risk modeling at present.

The Basel Committee allowed for different AMA approaches. However, this places a burden on the regulators to verify a variety of approaches from different banks to estimate their capital reserves against operational risk (Alexander (2003)). Moosa (2008) believes that the lack of consensus in approach and implementation difficulties mean that AMA is unlikely to pay off in terms of costs and benefits. He argues that there is no obvious reason why the AMA would produce lower capital requirements than the less sophisticated approaches and that the development of internal models of operational risk should not be motivated by regulatory considerations. Hageback (2005), on the other hand, argues that AMA will lead to a greater reduction in capital requirement than regulators expected compared to the standardized approach because of the interaction between operational risk losses and credit risk capital charges and that the two need to be managed simultaneously.

Yet, many chief operational risk officers feel that the requirements of Basel II have drifted from a flexible, risk-based approach to a focus on unachievable, precise measurement rather than improved risk management [Beans (2007)]. In keeping with that risk management as opposed to risk measurement approach, Scandizzo (2005) proposes a risk mapping approach to the management of operational risk, focusing on the identification of key risk indicators (KRI).

Still, banks are developing operational risk loss models using AMA. One problem is the shortage of loss data within any one bank to allow it to develop loss distributions. In the case of a bank having collected loss data over time, each data point represents a loss only above a certain threshold, say, when the loss was above €10,000. Roy (2008) and Ling (2008) report that 80 percent of the problems are data related and only 20 percent mathematical. Guillen et al. (2007) point out the significant bias that can occur if underreporting is ignored and attempts are made to partially address the issue with an approach to combine expert opinion with operational risk datasets. Buch-Kromann et al. (2007) go further and claim that methods for modeling operational risk based on one or two parametric models are destined to fail and that semi-parametric models are required, taking into account underreporting and guided by prior knowledge of the probability distribution shape.

The loss distribution modeling approach requires the fitting of probability distributions to describe the number of loss events per year and the severity of losses [Alexander (2003)] in the 8 x 7 different types of losses [Basel Committee (2003)]. One of the issues here is choice of distribution to describe severity of loss event. Embrechts et al. (2003) propose translated gamma and translated log normal distributions, for example.

A distribution of particular interest is the Pareto distribution that has been used in a number of fields where extreme value statistics are required. Borlaug et al. (2008) use the Pareto distribution in the field of electrical engineering to describe stimulated Raman scatterings in silicon. Castillo and Hadi (1997) describe the application of the Pareto distribution to the distribution of the highest wave in the design of sea structures. In a more related application, Rytgaard
A loss distribution for operational risk derived from pooled bank losses

(1990) and Philbrick (1995) are merely two examples of the extensive application in the actuarial literature to insurance losses.

Besides the loss distribution (and incidence distribution) approach, Cruz (2003) and Embrechts et al. (2003), among others, have proposed AMA models using the extreme value theory approach. Chavez-Demoulin et al. (2006) experiment with these approaches using advanced ‘peaks-over-threshold’ modeling, the construction of dependent loss processes using joint probability distributions over several variables (copulas), and the establishment of bounds for risk measures under partial information.

Proposed model

In this paper, we investigate the use of the Pareto distribution for fitting operational risk loss distribution using the 2002 data published by BIS.

Data from BIS

The parameters we used for the distributions are based on the summary of operational losses of 63 banks [Basel Committee (2003)], all of which used a threshold of €10,000 euros for reporting losses. Specifically, Table 6, Panel B of the Basel Committee report gives the data displayed in Figure 1.

Matching/assuming probability distributions

For a ‘typical’ bank, with regards to frequency of losses, we assume that the frequency of events follow a Poisson distribution with means based on average number of loss events taken from Basel Committee (2003) loss summary (mean = total loss events /63). (We only need one parameter, the mean, for determining a Poisson distribution.) Thus, we obtain the distribution of loss events for a ‘typical’ bank is Poisson with mean 586.06 loss events per year.

With regards to the magnitude of losses, we do not have to follow the usual approach in the literature of assuming the distribution is some particular distribution, such as log normal. The two right-hand columns of Figure 1 give us an empirical distribution of actual losses (Figure 3) and we will fit to this data the most appropriate probability distribution.

We find that this data can be represented by a Pareto distribution quite well. We are using the Pareto distribution \((k, a)\) whose CDF is given by \(1-(k/x)^a\) for all \(x > k\). The parameter \(k\) is called the threshold and \(a\), the shape parameter. When we fit a (cumulative) Pareto \([k, a]\) curve to the empirical data distribution (EDF) to find the best value of both \(k\) and \(a\), we get \(k = 9998.02\) and \(a = 0.977931\). Alternatively, we can note that for this data, banks use a threshold of €10,000 below which losses are not reported. Therefore, we can use the fact that \(k\) is 10,000 and estimate \(a\). We get \(a = 0.978036\). As the threshold parameter has a clear physical meaning in this case and the two Pareto distributions, Pareto \([9998.02, 0.977931]\) and Pareto \([10000, 0.978036]\), are virtually indistinguishable (Figure 5), we shall use the distribution Pareto \([10000, 0.978036]\). Figure 6 shows a comparison between the EDF and Pareto \([10000, 0.978036]\).

<table>
<thead>
<tr>
<th>Gross loss amounts (€1000s)</th>
<th>Number</th>
<th>Percent of all loss events</th>
<th>Total (€1000s)</th>
<th>Percent of all loss events</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-50</td>
<td>29355</td>
<td>79.5%</td>
<td>56070</td>
<td>9.6%</td>
</tr>
<tr>
<td>50-100</td>
<td>3611</td>
<td>9.8%</td>
<td>247607</td>
<td>4.2%</td>
</tr>
<tr>
<td>100-500</td>
<td>1627</td>
<td>8.3%</td>
<td>109858</td>
<td>10.5%</td>
</tr>
<tr>
<td>500-1000</td>
<td>47</td>
<td>1.1%</td>
<td>288771</td>
<td>5.0%</td>
</tr>
<tr>
<td>1000-10000</td>
<td>47</td>
<td>1.1%</td>
<td>1178471</td>
<td>20.2%</td>
</tr>
<tr>
<td>10000+</td>
<td>65</td>
<td>0.2%</td>
<td>2952848</td>
<td>50.6%</td>
</tr>
<tr>
<td>Total</td>
<td>36922</td>
<td>100.0%</td>
<td>5837725</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 1 - Data on number and size of loss events in 63 banks taken from Basel Committee Report (2003)

63 banks reporting
A loss distribution for operational risk derived from pooled bank losses

We also attempted to fit the generalized Pareto distribution but the additional complexity of the model was not considered worthwhile for the very slight gain in accuracy achieved – see Buch-Kromman’s (2007) claim about having to use multiple parameters.

Adjusting for thresholds

Most banks record (and report) losses only above a threshold, i.e., €5000 or €10,000. In practice, they may have many losses. We present here an approach to attempt to adjust for these unreported losses. For the BIS data, we have noted earlier that $k = \€10,000$ for use with a Pareto distribution to model loss impact. However, this did not account for unreported losses below $\€10,000$. The use of the Pareto distribution makes an adjustment quite straightforward because the shape parameter α remains unchanged. We simply replace k by a suitable number – smaller (if there are unreported losses below 10,000), or larger (if the smallest loss is above €10,000 but below €50,000 euros for the data we have).

The selected value will greatly affect the cumulative distribution function value as seen below (Figures 7 and 8). We can now calculate what percentage of the distribution lies between the new k and 10,000. Suppose this was 15%. This means that 15% of losses are estimated to be below 10,000 and therefore not reported. We can then adjust the mean of the Poisson distribution representing the number of loss events by multiplying by 1.15. This will allow for a more accurate estimation of the 99.9th percentile of the total loss distribution, which is used as the basis for estimating capital requirement.

However, if we consider that the values for the EDF are observed only above the threshold of 10,000 euros, we need to take only the relative value of what is reported to what is unreported. To get these, we need to subtract the value of the CDF at 10,000 and divide by (1-CDF) at 10,000 – we are subtracting the unreported losses and dividing by the reported losses to get relative proportions. We get the values provided in Figure 9.

Thus, while the observed frequencies give us a value of the shape parameter α, the regulator needs to determine an appropriate value of the threshold value k to account for unreported losses. The Pareto distribution for impact of loss events gives the regulator the flexibility of choosing k for all losses – reported and unreported – while using the value of 10,000 for reported losses.

Note that if the true threshold is k, the proportion of unreported loss events is as reported in Figure 10.

This means that the proportion of unreported losses depends rather dramatically on the value of k. However, the proportion of total annual losses (as opposed to the loss per incident) may not be as sensitive as we shall see through simulation.
A loss distribution for operational risk derived from pooled bank losses

Simulation of total annual losses
Taking the number of events to be a Poisson distribution (with 586.06 events/year mean) for ‘typical’ bank, and the loss per event as determined above to be Pareto (13146.8, 0.98706), we can generate the total annual losses.

Figures 11 and 12 provide results of annual losses over 10,000 years for this ‘typical’ bank.

For this total annual loss distribution, we can compile statistics like those of the BIS data. Again, keep in mind that these are total annual losses, not the range of losses per incident.

Conclusion
The Basel II accord introduced a broad framework to force banks to quantify operational risk measurement to calculate capital reserve requirements, but provided the flexibility to allow banks to pursue different modeling approaches. This has been a challenge because of paucity of a long enough history of data for any one bank to claim to have developed a reasonable loss model without heroic leaps of faith. We presented empirical evidence that the probability distribution of losses, at least from the regulator’s viewpoint, is a Pareto distribution when pooling the loss experience of the various banks under its oversight. Indeed, the regulator has (or can have) access to data on operational losses from all banks under its supervision so such a model is credible and could be a starting point for individual banks as well.

A model based on pooled loss experience provides the regulator a useful tool not only for regulatory approval but also for monitoring year-on-year changes to the operational risk loss profile for banks under the regulator’s supervision.

Further work is needed on at least three fronts. First, we could develop means to modify results from the model for ‘typical’ bank into a more tailored, informed recommendation for a specific bank. Second, we could extend this work so that the model provides bounds which can act as an ‘approved zone’ when comparing with an individual bank’s proposed AMA results. Third, and this merits much discussion, we need to investigate further the idea that the regulator should stick to developing AMA models and providing percentage guidelines to individual banks while the banks themselves could then focus exclusively on the risk management process rather than developing AMA models.
A loss distribution for operational risk derived from pooled bank losses

References

- Cruz, M., 2003, Modeling, measuring and hedging operational risk, Wiley
- Embrechts, P., C. Kluppelberg, and T. Mikosch, 1997, Modelling extremal events for insurance and finance, Springer
Guidelines for manuscript submissions

Guidelines for authors

In order to aid our readership, we have established some guidelines to ensure that published papers meet the highest standards of thought leadership and practicality. The articles should, therefore, meet the following criteria:

1. Does this article make a significant contribution to this field of research?
2. Can the ideas presented in the article be applied to current business models? If not, is there a roadmap on how to get there?
3. Can your assertions be supported by empirical data?
4. Is my article purely abstract? If so, does it picture a world that can exist in the future?
5. Can your propositions be backed by a source of authority, preferably yours?
6. Would senior executives find this paper interesting?

Subjects of interest
All articles must be relevant and interesting to senior executives of the leading financial services organizations. They should assist in strategy formulation. The topics that are of interest to our readership include:

• Impact of e-finance on financial markets & institutions
• Marketing & branding
• Organizational behavior & structure
• Competitive landscape
• Operational & strategic issues
• Capital acquisition & allocation
• Structural readjustment
• Innovation & new sources of liquidity
• Leadership
• Financial regulations
• Financial technology

Manuscript submissions should be sent to
Shahin Shojai, Ph.D.
The Editor
Editor@capco.com
Capco
Broadgate West
9 Appold Street
London EC2A 2AP
Tel: +44 207 426 1500
Fax: +44 207 426 1501

Manuscript guidelines

All manuscript submissions must be in English.

Manuscripts should not be longer than 7,000 words each. The maximum number of A4 pages allowed is 14, including all footnotes, references, charts and tables.

All manuscripts should be submitted by e-mail directly to the editor@capco.com in the PC version of Microsoft Word. They should all use Times New Roman font, and font size 10.

Where tables or graphs are used in the manuscript, the respective data should also be provided within a Microsoft Excel spreadsheet format.

The first page must provide the full name(s), title(s), organizational affiliation of the author(s), and contact details of the author(s). Contact details should include address, phone number, fax number, and e-mail address.

Footnotes should be double-spaced and be kept to a minimum. They should be numbered consecutively throughout the text with superscript Arabic numerals.

For monographs

For books

For contributions to collective works

For periodicals

For unpublished material
The world of finance has undergone tremendous change in recent years. Physical barriers have come down and organizations are finding it harder to maintain competitive advantage within today’s truly global market place. This paradigm shift has forced managers to identify new ways to manage their operations and finances. The managers of tomorrow will, therefore, need completely different skill sets to succeed.

It is in response to this growing need that Capco is pleased to publish the ‘Journal of financial transformation.’ A journal dedicated to the advancement of leading thinking in the field of applied finance.

The Journal, which provides a unique linkage between scholarly research and business experience, aims to be the main source of thought leadership in this discipline for senior executives, management consultants, academics, researchers, and students. This objective can only be achieved through relentless pursuit of scholarly integrity and advancement. It is for this reason that we have invited some of the world’s most renowned experts from academia and business to join our editorial board. It is their responsibility to ensure that we succeed in establishing a truly independent forum for leading thinking in this new discipline.

You can also contribute to the advancement of this field by submitting your thought leadership to the Journal.

We hope that you will join us on our journey of discovery and help shape the future of finance.

Shahin Shojai
Editor@capco.com

For more info, see opposite page

2009 The Capital Markets Company. VU: Shahin Shojai, Prins Boudewijnlaan 43, B-2650 Antwerp
All rights reserved. All product names, company names and registered trademarks in this document remain the property of their respective owners.
“It is a time of unprecedented change in the global wealth management market. More than ever before, banks are searching for solutions to help them mobilise to create greater growth and realise their strategic objectives.”

ALFRED R. WOOT, JR.
CHAIRMAN AND CHIEF EXECUTIVE OFFICER, SEI

The global wealth management landscape is changing.

To stay competitive, organisations know they must transform their business model to deliver a truly unique client experience. And yet, the challenges are greater than ever.

- Grow revenue
- Reduce cost and risk
- Lower capital investments

Working with the right business services partner can help meet these challenges.

Introducing the new Global Wealth Services solution from SEI.

A leader in investment processing and global asset management for over 30 years, SEI delivers a revolutionary new solution designed to help you successfully build and manage your business for the long term.

To learn more about how SEI can help your organisation grow revenues, reduce cost and risk and lower capital investments, contact Brandon Sharrett on +44 (0)20 7297 6425 or bsharrett@seic.com or visit www.seic.com.
Amsterdam T +31 20 561 6260
Antwerp T +32 3 740 10 00
Bangalore T +91 80 4199 7200
Frankfurt T +49 69 9760 9000
Geneva T +41 22 819 1774
London T +44 20 7426 1500
New York T +1 212 284 8600
Paris T +33 1 77 72 64 40
San Francisco T +1 415 445 0968
Toronto T +1 416 923 4570