Course Syllabus

Prerequisites/corequisites: MATH 231 and ELEC 206

Course Description:
Application of the theory of probability and statistics in modeling random phenomena and signals; in the calculation of system responses; and in making estimates, inferences and decisions in the presence of chance and uncertainty. Applications will be studied in areas such as communications, power systems, device modeling, measurements, reliability and quality control.

Instructor:
Professor Siripong Potisuk
Office: GRIMS 334
Phone: (843) 953-4895
E-mail: siripong.potisuk@citadel.edu
Office hours: 1100 – 1500 MWF. Others by appointment

Class schedule: (Three Credit Hours)
Section 01: 0900 – 0950, MWF; Room: GRIMS 328
Section 81: 1715 – 1830, MW; Room: GRIMS 328

Required Text:

References:

Course Webpage:
http://faculty.citadel.edu/potisuk

Course Outcomes:
A student who successfully fulfills the course requirements will have demonstrated
1) An appreciation for such issues as the omnipresence of variability, the high value of graphical analysis, and the importance and essentials of statistically designed experiments.
2) A basic understanding of elementary probability theory, frequency distributions and sampling.
3) An ability to solve probability problems applicable to electrical and computer engineering.
4) An ability to understand the probabilistic methods of signals and systems analysis with emphasis on engineering applications.
5) An ability to translate engineering problems into appropriate mathematical statements necessary for statistical analysis through inferential statistical methods.
Grading Policy:

Homework/Computer Exercises: 30%
Two tests (20% each): 40%
Final Exam (comprehensive): 30%

The following grading system will be adopted as a guideline for assigning a letter grade. This guideline is subject to change depending upon the overall class performance as well.

A : 90 – 100% B : 80 – 89.9% C : 70 – 79.9% D : 60 – 69.9% F : 0 – 59.9%

Homework:
1) Homework will be assigned on a weekly basis and must be turned in at the beginning of class on the due date. Only neat and legible work will be accepted. Thus, it is recommended that all homework be written in pencil and only on one side of engineering paper. Late homework will incur a 50% penalty and be accepted no later than one week from the due date.
2) Homework will be graded for effort and correctness. Solutions will be distributed in class or uploaded to the course webpage one week after the due date. It is imperative that student periodically check the course webpage for updates and important news pertaining to the class.

Attendance:
Class attendance is mandatory. Student is required to notify the instructor, if possible, in advance should it be necessary to miss a class for any reason and will be responsible for any material missed. Absences in excess of 20% of the class meetings will result in a failing grade for the course. It is noted that the date of the final exam is set by the Registrar’s office and cannot be changed. Unexcused absence from a test or final exam will result in a zero for that test or exam. Excused absence will be granted under extreme circumstances only (guard duty is not considered an extreme circumstance).

Classroom Policy
Classroom environment is an important factor for effective learning. Students are expected to strictly follow certain rules and regulations so as not to create unnecessary distractions and interruptions during class.
1) Food and drinks are strictly prohibited in the classroom.
2) Audible alarms of all electronic devices (cell phones, pagers, watches etc.) must be turned off.
3) Students are expected to attend class on time. Attendance will be called at the beginning of every class, and the results reported via the Citadel’s electronic class absence system.
4) Students are to refrain from talking to other students during class. Extraneous conversation creates noise and diminishes one’s ability to concentrate and pay attention.

Special Accommodations:
Any students requiring special accommodations for learning disabilities should provide the instructor with verifiable written documentation of their needs as early in the semester as possible (i.e., within the first two weeks of the semester). This will ensure that the students have ample opportunity to succeed in their academic pursuits. To request academic accommodations, students must register with the Academic Support Center at 953-1820.

Academic Honor Policy:
While it is permissible and recommended to rely on fellow students for assistance outside of classroom, it is not permissible to copy any portion of another student's work and pass it off as your own. Cheating and/or plagiarism in any form will be fully prosecuted under the Citadel honor code.
Important Dates:
- **Tuesday, August 29th**: SCCC Drop/Add ends
- **Monday, September 4th**: Labor Day (No CGC classes, SCCC classes held)
- **Wednesday, October 4th**: Test I
- **Tuesday, October 10th**: CGC Last day to withdraw with a “W”
- **Wednesday, October 18th**: Leadership Development day (No SCCC classes, CGC classes held)
- **Wednesday, October 25th**: SCCC Last day to withdraw with a “W”
- **Wednesday, November 18th**: Test II
- **Wednesday, November 25th**: SCCC Last day of class
- **Friday, November 17th**: Fall Break Begins After Last Class
- **Sunday, November 27th**: Fall Break Ends
- **Monday, December 4th**: CGC Last Day of Class
- **Wednesday, December 6th**: SCCC Last Day of Class
- **Friday, December 8th**: Final examination, GRIMS 32: 1300 – 1600 (Section 01)
- **Monday, December 11th**: Final examination, GRIMS 32: 1715 – 2015 (Section 81)

Lesson Plan:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08/21 – 08/25</td>
<td>Introduction, The Role of probability & Statistics in Engineering</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>3</td>
<td>09/04 – 09/08</td>
<td>Random Variables, Discrete Random Variables and Probability Distributions</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>4</td>
<td>09/11 – 09/15</td>
<td>Continuous Random Variables and Probability Distributions, Gaussian (Normal) Distribution</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>5</td>
<td>09/18 – 09/22</td>
<td>Operations on a Single Random Variable</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>6</td>
<td>09/25 – 09/29</td>
<td>Pairs of Random Variables</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>7</td>
<td>10/02 – 10/06</td>
<td>Multiple Random Variables, TEST I</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>8</td>
<td>10/09 – 10/13</td>
<td>Random Sums and Sequences</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>9</td>
<td>10/16 – 10/20</td>
<td>Random Processes</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>10</td>
<td>10/23 – 10/27</td>
<td>Markov Processes</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>11</td>
<td>10/30 – 11/03</td>
<td>Power Spectral Density</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>12</td>
<td>11/06 – 11/10</td>
<td>Random Processes in Linear Systems</td>
<td>Appendix C Chapter 11</td>
</tr>
<tr>
<td>13</td>
<td>11/13 – 11/17</td>
<td>Sampling Distributions, Estimation of Population Parameters, Point & Interval Estimators, Determination of Sample size, TEST II</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>14</td>
<td>11/20 – 11/24</td>
<td>FALL BREAK</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11/27 – 12/01</td>
<td>Hypothesis Testing of the Means, Inferences Concerning Variances, Proportions</td>
<td>Notes</td>
</tr>
<tr>
<td>16</td>
<td>12/04 – 12/07</td>
<td>Regression Analysis</td>
<td></td>
</tr>
</tbody>
</table>