Homework Assignment 1 Due date: January 20th, 2010

1. Given points P(1, −3, 5), Q(2, 4, 6), and R(0, 3, 8), find:
 (a) the distance vector \(\vec{r}_{QR} \) (b) the distance between Q and R
 (b) the angle between QP and QR (d) the area of the triangle PQR
 (e) A vector parallel to PQ with magnitude of 10

2. Given \(\vec{A} = 2\hat{x} + \hat{y} - 3\hat{z} \), \(\vec{B} = \hat{y} - \hat{z} \), and \(\vec{C} = 3\hat{x} + 5\hat{y} + 7\hat{z} \), determine:
 (a) \(\vec{A} - 2\vec{B} + \vec{C} \) (b) \(\frac{2\vec{A} - 3\vec{B}}{|\vec{C}|} \)
 (c) \(\vec{A} \cdot \vec{C} - |\vec{B}|^2 \)
 (d) \(\vec{A} \cdot \vec{B} \times \vec{C} \) (e) \(\vec{A} \times \vec{B} \cdot \vec{C} \)
 (f) \((\vec{A} \times \vec{B}) \times (\vec{B} \times \vec{C}) \)
 (g) the values of \(\alpha \) and \(\beta \) such that \(a\vec{A} + \beta\vec{B} + \vec{C} \) is parallel to the \(y \)-axis

3. Let \(\vec{E} = 3\hat{y} + 4\hat{z} \) and \(\vec{F} = 4\hat{x} - 10\hat{y} + 5\hat{z} \). Find both the scalar and vector components of \(\vec{E} \) along \(\vec{F} \). Also, determine a unit vector perpendicular to both \(\vec{E} \) and \(\vec{F} \).

4. Let \(\vec{Q} = (2x - y)\hat{x} + (4y + z)\hat{y} + (4x - 2z)\hat{z} \).
 (a) Determine a unit vector in the direction of \(\vec{Q} \) at P(1, 2, 1).
 (b) Find the component of \(\vec{Q} \) at P in the direction of PT where T is the point (5, 3, −4).
 (c) At which coordinate is \(\vec{Q} \) the same as the unit vector along \(\hat{x} + 11\hat{y} + 10\hat{z} \)?

Reading Assignment: Chapter 2